精英家教网 > 高中数学 > 题目详情
1.已知棱长为1的正方体ABCD-A1B1C1D1,F是棱BC的中点,M是线段A1F上的动点,则△MDD1与△MCC1的面积和的最小值是$\frac{\sqrt{65}}{10}$.

分析 由题意,就是求M到DD1与CC1距离和的最小值,由于A1F在平面ABCD上的射影为AF,故问题转化为正方形ABCD中,AF上的点到D,C距离和的最小值.

解答 解:由题意,就是求M到DD1与CC1距离和的最小值,由于A1F在平面ABCD上的射影为AF,故问题转化为正方形ABCD中,AF上的点到D,C距离和的最小值,设出D关于AF的对称点D',则DD′=$\frac{4\sqrt{5}}{5}$,cos∠CDD′=$\frac{1}{\sqrt{5}}$
∴CD′=$\sqrt{1+\frac{16}{5}-2×1×\frac{4\sqrt{5}}{5}×\frac{1}{\sqrt{5}}}$=$\frac{\sqrt{65}}{5}$,
∴△MDD1与△MCC1的面积和的最小值是$\frac{1}{2}$×$\frac{\sqrt{65}}{5}$=$\frac{\sqrt{65}}{10}$,
故答案为:$\frac{\sqrt{65}}{10}$.

点评 本题考查棱柱的结构特征,考查余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线l,若直线l与抛物线在第一象限的交点为A并且点A也在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线的离心率为$\frac{{\sqrt{21}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈(0,5),且a≠1,则函数f(x)=loga(ax-1)在(2,+∞)上为单调函数的概率为(  )
A.$\frac{9}{10}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinB=$\sqrt{3}$bcosC,a2-c2=2b2
(Ⅰ)求C的大小;
(Ⅱ)若△ABC的面积为21$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,两人分别从A村出发,其中一人沿北偏东60°方向行走了1km到了B村,另一人沿北偏西30°方向行走了$\sqrt{3}$km到了C村,问B、C两村相距多远?B村在C村的什么方向上?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(-ln 2),则下列关于a,b,c的大小关系正确的是(  )
A.a>b>cB.a<c<bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-1,x>0\\-{x^2}-2x,x≤0\end{array}\right.$
(1)求f(1)的值;
(2)画出函数f(x)的图象并写出该函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现有一圆心角为$\frac{π}{2}$,半径为12cm的扇形铁皮(如图).P,Q是弧AB上的动点且劣弧$\widehat{PQ}$的长为2πcm,过P,Q分别作与OA,OB平行或垂直的线,从扇形上裁剪出多边形OHPRQT,将该多边形面积表示为角α的函数,并求出其最大面积是多少?

查看答案和解析>>

同步练习册答案