分析 根据条件即可求得点P1,P2到P7的坐标,从而可以求出向量$\overrightarrow{{P}_{1}{P}_{2}},\overrightarrow{{P}_{2}{P}_{3}},…,\overrightarrow{{P}_{6}{P}_{7}}$的坐标,进行向量数量积的坐标运算便可求出a1=1,a2=2,a3=4,a4=8,a5=16,从而便可看出数列{an}是以1为首项,2为公比的等比数列,从而可求出前n项和为2n-1,从而可以得到2n>1001,这样便可判断出最小正整数n的值.
解答 解:由条件得,P1(1,0),P2(1,1),P3(0,2),P4(-2,2),P5(-4,0),P6(-4,-4),P7(0,-8)…;
∴${a}_{1}=\overrightarrow{{P}_{1}{P}_{2}}•\overrightarrow{{P}_{2}{P}_{3}}=(0,1)•(-1,1)=1$,${a}_{2}=\overrightarrow{{P}_{2}{P}_{3}}•\overrightarrow{{P}_{3}{P}_{4}}=(-1,1)•(-2,0)=2$,${a}_{3}=\overrightarrow{{P}_{3}{P}_{4}}•\overrightarrow{{P}_{4}{P}_{5}}=(-2,0)•(-2,-2)=4$,${a}_{4}=\overrightarrow{{P}_{4}{P}_{5}}•\overrightarrow{{P}_{5}{P}_{6}}=(-2,-2)•(0,-4)=8$,${a}_{5}=\overrightarrow{{P}_{5}{P}_{6}}•\overrightarrow{{P}_{6}{P}_{7}}=(0,-4)•(4,-4)=16$;
∴数列{an}是首项为1,公比为2的等比数列;
∴${a}_{1}+{a}_{2}+…+{a}_{n}=\frac{1•(1-{2}^{n})}{1-2}={2}^{n}-1$;
∴由a1+a2+…+an>1000得,2n-1>1000;
∴2n>1001;
∵29=512,210=1024;
∴满足a1+a2+…+an>1000的最小正整数n=10.
故答案为:(0,2),10.
点评 考查对点变换的理解,能够根据P1点的坐标求出P2,P3,P4,…点的坐标,根据点的坐标可求向量的坐标,以及向量数量积的坐标运算,等比数列的定义,以及等比数列的前n项和公式,估算的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于点($\frac{π}{6}$,0)对称 | B. | 关于点($\frac{π}{3}$,0)对称 | ||
| C. | 关于直线x=$\frac{π}{6}$对称 | D. | 关于直线x=$\frac{π}{3}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “π是函数y=sinx的一个周期”或“2π是函数y=cosx的一个周期” | |
| B. | “m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的充分不必要条件 | |
| C. | “若a≤b,则2a≤2b-1”的否命题 | |
| D. | “任意a∈(0,+∞),函数y=ax在定义域内单调递增”的否定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},+∞)$ | B. | $(\frac{1}{2},+∞)$ | C. | $(-∞,-\frac{1}{2})$ | D. | $(-∞,\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com