分析 (Ⅰ)由已知可知△MF1N 的周长为4a=4$\sqrt{2}$,椭圆经过点A(0,-1),由此能求出椭圆C的方程.
(Ⅱ)设直线PQ的方程为y-1=k(x-1),k≠2,代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,由此利用根的判别式、韦达定理,结合已知条件能证明直线AP与AQ斜率之和为定值.
解答 解:(Ⅰ)由已知可知△MF1N 的周长为4a,∴4a=4$\sqrt{2}$,得a=$\sqrt{2}$,
又椭圆经过点A(0,-1),得b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.…(4分)
证明:(Ⅱ)由题设可设直线PQ的方程为y-1=k(x-1),k≠2,
化简,得y=kx-k+1,代入$\frac{{x}^{2}}{2}+{y}^{2}=1$,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,
由已知△>0,设P(x1,y1),Q(x2,y2),x1x2≠0,
则${x}_{1}+{x}_{2}=\frac{4k(k-1)}{1+2{k}^{2}}$,${x}_{1}{x}_{2}=\frac{2k(k-2)}{1+2{k}^{2}}$,…(6分)
从而直线AP,AQ的斜率之和
kAP+kAQ=$\frac{{y}_{1}+1}{{x}_{1}}+\frac{{y}_{2}+1}{{x}_{2}}$=$\frac{k{x}_{1}-k+2}{{x}_{1}}$+$\frac{k{x}_{2}-k+2}{{x}_{2}}$=2k-(k-2)($\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}$) …(8分)
=2k-(k-2)$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=2k-(k-2)$\frac{4k(k-1)}{2k(k-2)}$=2k-2(k-1)=2,
故直线AP与AQ斜率之和为定值2.…(12分)
点评 本题考查椭圆方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、椭圆性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com