精英家教网 > 高中数学 > 题目详情
17.设P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上的点,它的一条渐近线方程为y=$\frac{3}{2}$x,两焦点间距离为2$\sqrt{13}$,F1,F2分别是该双曲线的左、右焦点,若|PF1|=3,则|PF2|=7.

分析 根据双曲线的渐近线以及条件求出a,c的值,结合双曲线的定义进行求解即可.

解答 解:双曲线的渐近线方程为y=±$\frac{b}{a}$x,
则$\frac{b}{a}$=$\frac{3}{2}$,即b=$\frac{3}{2}$a,
∵两焦点间距离为2$\sqrt{13}$,
∴2c=2$\sqrt{13}$,即c=$\sqrt{13}$,
则b2=$\frac{9}{4}$a2=c2-a2
即$\frac{13}{4}$a2=13,则a2=4,a=2,
∵|PF1|=3<a+c=$\sqrt{13}$+2,
∴点P在双曲线的左支上,
则|PF2|-|PF1|=2a=4,
即|PF2=4+|PF1|=4+3=7,
故答案为:7.

点评 本题主要考查双曲线方程的应用,根据条件建立方程组关系求出a,c的值结合双曲线的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,则$\frac{sin(2π+α)}{cos(-α)ta{n}^{2}α}$=(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右顶点为A,渐近线为l1,l2,点P为双曲线C的动点(与点A不重合),过点P作l1的平行线交l2于M,直线AP交l2于N,则|MN|=(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,O为坐标原点,若按双曲线右支上存在一点P,使$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{{F}_{1}{F}_{2}}$|=|$\overrightarrow{P{F}_{2}}$|,则双曲线的离心率为(  )
A.1±$\sqrt{2}$B.1+$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点P(2,4)作圆O:x2+y2=20的切线l,直线l恰好过椭圆C的右顶点与上顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O上的一点Q的切线l1交椭圆C于A,B两点,试确定∠AOB的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α,β是△ABC的两锐角,且$(sinα+1)(1-\frac{1}{sinα})>(cosβ+1)(1-\frac{1}{cosβ})$,则△ABC的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2$\sqrt{3}$倍.
(Ⅰ)求C的离心率;
(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得$\overrightarrow{OM}=2\overrightarrow{OP}+\overrightarrow{OQ}$?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),期左、右焦点分别为F1、F2,过F2的一条直线与椭圆交于M、N两点,△MF1N的周长为4$\sqrt{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)经过点B(1,1)且斜率为k的直线与椭圆C交于不同的两点P、Q(均异于点A),证明直线AP与AQ斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=sin(2x+φ)在x=$\frac{π}{6}$处取得最大值,则函数y=cos(2x+φ)的图象(  )
A.关于点($\frac{π}{6}$,0)对称B.关于点($\frac{π}{3}$,0)对称
C.关于直线x=$\frac{π}{6}$对称D.关于直线x=$\frac{π}{3}$对称

查看答案和解析>>

同步练习册答案