精英家教网 > 高中数学 > 题目详情
2.已知α,β是△ABC的两锐角,且$(sinα+1)(1-\frac{1}{sinα})>(cosβ+1)(1-\frac{1}{cosβ})$,则△ABC的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形

分析 由条件根据函数y=(1+t)(1-$\frac{1}{t}$)在(0,1)上是增函数,可得sinα>cosβ=sin($\frac{π}{2}$-β),可得α>$\frac{π}{2}$-β,由此可得△ABC的第三个内角为π-(α+β)为锐角,从而得出结论.

解答 解:∵已知α,β是△ABC的两锐角,且$(sinα+1)(1-\frac{1}{sinα})>(cosβ+1)(1-\frac{1}{cosβ})$,
由于sinα∈(0,1),cosβ∈(0,1),函数y=(1+t)(1-$\frac{1}{t}$)在(0,1)上是增函数,
∴sinα>cosβ=sin($\frac{π}{2}$-β),∴α>$\frac{π}{2}$-β,即α+β>$\frac{π}{2}$,
故△ABC的第三个内角为π-(α+β)为锐角,故△ABC为锐角三角形,
故选:A.

点评 本题主要考查函数y=(1+t)(1-$\frac{1}{t}$)在(0,1)上的单调性的应用,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知两点A(0,2),B(1,0),直线l:3x+y+m=0上一点P满足PA=$\sqrt{2}$PB,则实数m的取值范围是[-14,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若抛物线y2=2px的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的左焦点重合,则抛物线方程为y2=-8x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),过F2作垂直于x轴的直线l1交椭圆C于A,B两点,且满足|AF1|=7|AF2|
(Ⅰ)求椭圆C的离心率;
(Ⅱ)过F1作斜率为1的直线l2交C于M,N两点.O为坐标原点,若△OMN的面积为$\frac{2\sqrt{6}}{5}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上的点,它的一条渐近线方程为y=$\frac{3}{2}$x,两焦点间距离为2$\sqrt{13}$,F1,F2分别是该双曲线的左、右焦点,若|PF1|=3,则|PF2|=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A、B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点,离心率为$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1是线段QF2的中点,若过A,Q,F2三点的圆恰好与直线l:x-$\sqrt{3}$y-3=0相切.
(1)求椭圆C的方程;
(2)过定点M(0,2)的直线l1与椭圆C交于G,H两点,且|MG|>|MH|.若实数λ满足$\overrightarrow{MG}=λ\overrightarrow{MH}$,求λ+$\frac{1}{λ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,焦距为$4\sqrt{2}$,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点.
(Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,且直线PQ与C2相切,求△FPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC 中,点D在边 AB上,且$\frac{AD}{DB}$=$\frac{1}{3}$.记∠ACD=α,
∠BCD=β.
(Ⅰ)求证:$\frac{AC}{BC}$=$\frac{sinβ}{3sinα}$
(Ⅱ)若α=$\frac{π}{6}$,β=$\frac{π}{2}$,AB=$\sqrt{19}$,求BC 的长.

查看答案和解析>>

同步练习册答案