精英家教网 > 高中数学 > 题目详情
8.下列命题中,假命题是(  )
A.“π是函数y=sinx的一个周期”或“2π是函数y=cosx的一个周期”
B.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的充分不必要条件
C.“若a≤b,则2a≤2b-1”的否命题
D.“任意a∈(0,+∞),函数y=ax在定义域内单调递增”的否定

分析 A.根据复合命题的真假关系进行判断.
B.根据函数单调性以及充分条件和必要条件的定义进行判断.
C.求出命题的否命题,根据指数函数的单调性进行判断.
D.根据含有量词的命题的否定进行判断.

解答 解:A.π是函数y=sinx的一个周期是假命题,2π是函数y=cosx的一个周期是真命题,则“π是函数y=sinx的一个周期”或“2π是函数y=cosx的一个周期”是真命题.
B.当x≥1时,log2x≥0,则f(x)≥m,若函数f(x)=m+log2x(x≥1)不存在零点,
则m>0,则“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的充要条件,故B是假命题,
C.“若a≤b,则2a≤2b-1”的否命题是,“若a>b,则2a>2b-1”为真命题.
∵a>b,∴2a>2b>2b-1,故C是真命题.
D.“任意a∈(0,+∞),函数y=ax在定义域内单调递增”是假命题,则“任意a∈(0,+∞),函数y=ax在定义域内单调递增”的否定是真命题,
故选:B

点评 本题主要考查命题的真假判断,涉及充分条件和必要条件的判断,复合命题之间的关系以及四种命题的真假判断,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如图).
(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;
(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;
(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)
(注:s2=$\frac{1}{n}$[(x${\;}_{1}+\overline{x}$)2+(x2-$\overline{x}$)2+…+(x${\;}_{n}-\overline{x}$)2],其中$\overline{x}$为数据x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(1)把函数y=sin2x的图象沿x轴向左平移$\frac{π}{6}$个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)图象,对于函数y=f(x)有以下四个判断:
①该函数的解析式为y=2sin(2x+$\frac{π}{6}$);②该函数图象关于点($\frac{π}{3}$,0)对称;
③该函数在[0,$\frac{π}{6}$]上是增函数;④函数y=f(x)+a在[0,$\frac{π}{2}$]上的最小值为$\sqrt{3}$,则a=2$\sqrt{3}$.
(2)以下命题:⑤若|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,则$\overrightarrow{a}$∥$\overrightarrow{b}$;⑥$\overrightarrow{a}$=(-1,1)在$\overrightarrow{b}$=(3,4)方向上的投影为$\frac{1}{5}$;⑦若非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{b}$|,则|2$\overrightarrow{b}$|>|$\overrightarrow{a}$+2$\overrightarrow{b}$|.
在(1)和(2)中,正确判断的序号是②④⑤⑥⑦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,定义$\left\{\begin{array}{l}{{x}_{n+1}={x}_{n}-{y}_{n}}\\{{y}_{n+1}={x}_{n}+{y}_{n}}\end{array}\right.$,(n∈N*) 为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换,已知P1(1,0),P2(x2,y2),P3(x3,y3),…是经过点变换得到的一无穷点列,则P3的坐标为(0,2);设an=$\overrightarrow{{P}_{n}{P}_{n+1}•}$$\overrightarrow{{P}_{n+1}{P}_{n+2}}$,则满足a1+a2+…+an>1000的最小正整数n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知θ为第一象限的角,sinθ-2cosθ=-$\frac{2}{5}$,则sinθ+cosθ等于(  )
A.$\frac{9}{5}$B.$\frac{8}{5}$C.$\frac{7}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=(m-\frac{n}{3})•{3^x}+{x^2}+2nx$,记函数y=f(x)的零点构成的集合为A,函数y=f[f(x)]的零点构成的集合为B,若A=B,则m+n的取值范围为[0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有一个解三角形的题因纸张破损有一个条件不清,具体如下:“在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=$\sqrt{3}$,B=45°,c=$\frac{\sqrt{6}+\sqrt{2}}{2}$,求角A:“经推断破损处的条件为三角形一边的长度,且答案提示A=60°,试将条件补充完整.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.环保组织随机抽检市内某河流2015年内100天的水质,检测单位体积河水中重金属含量x,并根据抽检数据绘制了如下图所示的频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)假设某企业每天由重金属污染造成的经济损失y(单位:元)与单位体积河水中重金属含量x
的关系式为$y=\left\{\begin{array}{l}0,0≤x≤100\\ 4x-400,100<x≤200\\ 5x-600,200<x≤250\end{array}\right.$,若将频率视为概率,在本年内随机抽取一天,试估计这天经济损失不超过500元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a>0,b>0,且a+b=4,则$\sqrt{ab}$的最大值为2.

查看答案和解析>>

同步练习册答案