精英家教网 > 高中数学 > 题目详情
18.若$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,1),(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-m$\overrightarrow{b}$),则m=(  )
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

分析 先利用向量加法的坐标运算法则求出$2\overrightarrow{a}+\overrightarrow{b}$=(3,3),$\overrightarrow{a}-m\overrightarrow{b}$=(2+m,1-m),再由(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-m$\overrightarrow{b}$),能求出m.

解答 解:∵$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,1),
∴$2\overrightarrow{a}+\overrightarrow{b}$=(3,3),$\overrightarrow{a}-m\overrightarrow{b}$=(2+m,1-m),
∵(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-m$\overrightarrow{b}$),
∴2+m=1-m,解得m=-$\frac{1}{2}$.
故选:D.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量加法的坐标运算法则和向量平行的性质求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若向量数量积$\overrightarrow{a}$•$\overrightarrow{b}$<0则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的取值范围是(  )
A.(0,$\frac{π}{2}$)B.[0,$\frac{π}{2}$)C.($\frac{π}{2}$,π]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线f(x)=$\frac{{a{x^2}}}{x+1}$在点(1,f(1))处切线的斜率为1,则实数a的值为(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$-\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}是等比数列,a2•a10=4,且a2+a10>0,则a6=(  )
A.1B.2C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=aex-3x+1的图象在点(0,f(0))处的切线方程为y=x+b,则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{OA}$=2$\overrightarrow{i}$-$\overrightarrow{j}$,点B的坐标为(-1,3),则与$\overrightarrow{AB}$的同向的单位向量的坐标是$(-\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$ax2+lnx,g(x)=-bx,其中a,b∈R,设h(x)=f(x)-g(x),
(1)若f(x)在x=$\frac{\sqrt{2}}{2}$处取得极值,且f′(1)=g(-1)-2.求函数h(x)的单调区间;
(2)若a=0时,函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:$\frac{{{x}_{1}x}_{2}}{{e}^{2}}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xln(ax)(a>0)
(1)若f′(x)≤$\frac{x}{2}$+$\frac{1}{2}$对任意的x>0恒成立,求实数a的取值范围;
(2)当a=1时,设函数f(x)的极值点为x0,若实数m,n满足x0<m<1,x0<n<1,且m+n<1.求证:$\frac{mn}{(m+n)^{2}}$<(m+n)${\;}^{\frac{n}{m}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f($\frac{x}{2}$-1)=2x+3,且f(m)=6,则m=-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案