精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=aex-3x+1的图象在点(0,f(0))处的切线方程为y=x+b,则b=5.

分析 利用求导法则求出曲线方程的导函数,把x=0代入导函数求出的导函数值即为切线方程的斜率,而切线方程的斜率为1,求出a,可得切点坐标,然后把切点坐标代入直线方程,即可求出b的值.

解答 解:由题意可知曲线在x=0出切线方程的斜率为1,
求导得:y′=aex-3,所以y′|x=0=a-3=1,即a=4,
把x=0代入f(x)=aex-3x+1得f(0)=5
(0,5)代入直线方程得:b=5.
故答案为:5.

点评 此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知三棱锥P-ABC的顶点都在同一个球面上(球O),且PA=2,PB=PC=$\sqrt{6}$,当三棱锥P-ABC的三个侧面的面积之和最大时,该三棱锥的体积与球O的体积的比值是$\frac{3}{16π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)<2f(1),则a的取值范围(  )
A.[1,2]B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxcosx-$\sqrt{3}cos2x({x∈R})$.
(1)若f(a)=$\frac{1}{2}$且$a∈({\frac{5π}{12},\frac{2π}{3}})$,求cos2a;
(2)求曲线y=f(x)在点(0,f(0))处的切线方程;
(3)记函数f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最大值为b,且函数f(x)在[aπ,bπ](a<b)上单调递增,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.cos10°•cos20°-cos80°•sin20°=(  )
A.$\frac{1}{2}$B.cos10°C.$\frac{{\sqrt{3}}}{2}$D.-sin10°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,1),(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-m$\overrightarrow{b}$),则m=(  )
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=x-1在区间[1,2]上的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正四棱锥S-ABCD的底面边长为4,高为3,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为2$\sqrt{2}$+$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的右焦点为F,右顶点为A,离心率为e,点P(m,0)(m>4)满足条件|FA|=|AP|•e.
(Ⅰ)求m的值;
(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,求证:∠MPF=∠NPF.

查看答案和解析>>

同步练习册答案