精英家教网 > 高中数学 > 题目详情
13.正四棱锥S-ABCD的底面边长为4,高为3,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为2$\sqrt{2}$+$\sqrt{17}$.

分析 由题意知:点P的轨迹为如图所示的三角形EFG,其中G、F为中点,可得EF=$\frac{1}{2}$BD,GE=GF=$\frac{1}{2}$SB,即可得出.

解答 解:由题意知:点P的轨迹为如图所示的三角形EFG,
其中G、F为中点,BD=4$\sqrt{2}$,SB=$\sqrt{{3}^{2}+(2\sqrt{2})^{2}}$=$\sqrt{17}$.
∴EF=$\frac{1}{2}$BD=2$\sqrt{2}$,
GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{17}}{2}$,
∴轨迹的周长为2$\sqrt{2}$+$\sqrt{17}$.
故答案为:2$\sqrt{2}$+$\sqrt{17}$.

点评 本题考查了正四棱锥的性质、三角形中位线定理、勾股定理、正方形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{10-x}{x-1}$>2的解集为(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=aex-3x+1的图象在点(0,f(0))处的切线方程为y=x+b,则b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$ax2+lnx,g(x)=-bx,其中a,b∈R,设h(x)=f(x)-g(x),
(1)若f(x)在x=$\frac{\sqrt{2}}{2}$处取得极值,且f′(1)=g(-1)-2.求函数h(x)的单调区间;
(2)若a=0时,函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:$\frac{{{x}_{1}x}_{2}}{{e}^{2}}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合P={0,x},Q={lnx,2},P∩Q={0},则P∪Q为(  )
A.{0,2}B.{0,1,2}C.{1,2}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xln(ax)(a>0)
(1)若f′(x)≤$\frac{x}{2}$+$\frac{1}{2}$对任意的x>0恒成立,求实数a的取值范围;
(2)当a=1时,设函数f(x)的极值点为x0,若实数m,n满足x0<m<1,x0<n<1,且m+n<1.求证:$\frac{mn}{(m+n)^{2}}$<(m+n)${\;}^{\frac{n}{m}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A、B是抛物线C上异于O的两点.
(1)求抛物线C的方程;
(2)若OA⊥OB,求证直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.运行如图的程序,若x=2,则输出的y等于(  )
A.9B.7C.13D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正四面体(所有棱长都相等的三棱锥)的俯视图如图所示,其中四边形ABCD是边长为$\sqrt{2}$cm的正方形,则这个正四面体的主视图的面积为(  )cm2
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案