分析 由题意知:点P的轨迹为如图所示的三角形EFG,其中G、F为中点,可得EF=$\frac{1}{2}$BD,GE=GF=$\frac{1}{2}$SB,即可得出.
解答 解:由题意知:点P的轨迹为如图所示的三角形EFG,
其中G、F为中点,
BD=4$\sqrt{2}$,SB=$\sqrt{{3}^{2}+(2\sqrt{2})^{2}}$=$\sqrt{17}$.
∴EF=$\frac{1}{2}$BD=2$\sqrt{2}$,
GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{17}}{2}$,
∴轨迹的周长为2$\sqrt{2}$+$\sqrt{17}$.
故答案为:2$\sqrt{2}$+$\sqrt{17}$.
点评 本题考查了正四棱锥的性质、三角形中位线定理、勾股定理、正方形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com