精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数的极值;

(2)若在区间上存在不相等的实数,使得成立,求的取值范围;

(3)设的图象为的图象为,若直线分别交于,问是否存在整数,使处的切线与处的切线互相平行,若存在,求出的所有值,若不存在,请说明理由.

【答案】(1)极大值为,无极小值;(2);(3).

【解析】

1)对函数进行求导,并求出方程的根为,判断为函数的极大值点,再代入求极大值;

2)问题转化成函数在区间存在极值点;

3)根据两条切线互相平行,得到斜率相等,从而构造出的方程,再从方程中把分离出来,构造关于的函数,研究函数的值域,得到的取值范围后,再根据为整数,求得的值.

1)当时,

时,得,当时,得

所以单调递增,在单调递减,

所以,无极小值.

2)令,则

由题意知在区间存在极值点,所以有解,

所以有解,

,则

时,恒成立,所以单调递增,且

所以.

3,则

,则

在点处的切线的斜率,在点处的切线的斜率

假设存在两切线平行,所以,即有解,

所以有解,令,则

时,得;当时,得

所以单调递增,在单调递减,

所以

所以恒成立,所以单调递减,

所以,则,又为整数,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P1),Qcosxsinx),O为坐标原点,函数fx

1)求fx)的解析式及最小正周期;

2)若A为△ABC的内角,fA)=4BC3,△ABC的面积为,求AB+AC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面

分别为线段上的点,且

(1)证明:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)证明:ADPB.

(2)若PB=AB=PA=2,求三棱锥P-BCD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题;命题函数在区间上有零点.

1)当时,若为真命题,求实数的取值范围;

2)若命题是命题的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面为菱形,的中点,为等腰直角三角形,,且.

(1)证明:平面.

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

同步练习册答案