【题目】关于函数,给出下列命题:
①若函数f(x)是R上周期为3的偶函数,且满足f(1)=1,则f(2)-f(-4)=0;
②若函数f(x)满足f(x+1)f(x)=2 017,则f(x)是周期函数;
③若函数g(x)=
是偶函数,则f(x)=x+1;
④函数y=
的定义域为
.
其中正确的命题是 . (写出所有正确命题的序号)
【答案】①②
【解析】①因为f(x+3)=f(x)且f(-x)=f(x),所以f(2)=f(-1+3)=f(-1)=f(1)=1,f(-4)=f(-1)=f(1)=1,故f(2)-f(-4)=0,①正确.②因为f(x+1)f(x)=2 017,所以f(x+1)=
,f(x+2)=
=f(x).所以f(x)是周期为2的周期函数,②正确.③令x<0,则-x>0,g(-x)=-x-1.又g(x)为偶函数,所以g(x)=g(-x)=-x-1.即f(x)=-x-1,③不正确.④要使函数有意义,需满足
即0<|2x-3|≤1,
所以1≤x≤2且x≠
,即函数的定义域为
,④不正确.
①利用函数的周期性和奇偶性求值判断.②利用周期函数的定义证明.③利用偶函数的定义推导.④利用函数的性质求函数的定义域.
科目:高中数学 来源: 题型:
【题目】现从甲、乙两个品牌共9个不同的空气净化器中选出3个分别测试A、B、C三项指标,若取出的3个空气净化器中既有甲品牌又有乙品牌的概率为
,那么9个空气净化器中甲、乙品牌个数分布可能是( )
A.甲品牌1个,乙品牌8个
B.甲品牌2个,乙品牌7个
C.甲品牌3个,乙品牌6个
D.甲品牌4个,乙品牌5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x+1|.
(1)解关于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为自然对数的底数.
(1)若函数
在区间
上是单调函数,试求实数
的取值范围;
(2)已知函数
,且
,若函数
在区间
上恰有3个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们可以用随机模拟的方法估计
的值,如图程序框图表示其基本步骤(函数
是产生随机数的函数,它能随机产生
内的任何一个实数).若输出的结果为
,则由此可估计
的近似值为( )![]()
A.3.119
B.3.124
C.3.132
D.3.151
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心为
,半径为1的圆.
(1)求曲线
,
的直角坐标方程;
(2)设
为曲线
上的点,
为曲线
上的点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形
中,点
在线段
上,
,
,沿直线
将
翻折成
,使点
在平面
上的射影
落在直线
上.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求二面角
的平面角的余弦值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com