精英家教网 > 高中数学 > 题目详情
16.已知点A,B为圆C:x2+y2=4上的任意两点,且|AB|>2,若线段AB中点组成的区域为M,在圆C内任取一点,则该点落在区域M内的概率为$\frac{3}{4}$.

分析 由题意,求出线段AB中点组成的区域为M为半径为$\sqrt{3}$的同心圆,利用几何概型的公式得到所求.

解答 解:由题意,线段AB中点组成的区域M为以原点为圆心,$\sqrt{3}$为半径的圆,由几何概型的公式得到$\frac{π(\sqrt{3})^{2}}{π×4}=\frac{3}{4}$;
故答案为:$\frac{3}{4}$.

点评 本题考查了几何概型的概率求法;关键是求出区域M的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:3两段,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{3\sqrt{2}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=x+yi(x,y∈R)满足z•$\overline{z}$+(1-2i)•z+(1+2i)•$\overline{z}$=3.求复数z在复平面内对应的点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)试比较f(-1)与f(a)的大小;
(Ⅱ)当a=-5时,求函数f(x)的图象与轴围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.把正整数排列成如图甲的三角形数阵,然后擦去第偶数行的奇数和第奇数行中的偶数,得到如图乙的三角数阵,再把图乙中的数按从小到大的顺序排成一列,得到数列{an},若an=623,则n的值为324.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2017年省内事业单位面向社会公开招聘工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于90分的才有资格参加面试,90分以下(不含90分)则被淘汰.现有2000名竞聘者参加笔试,参加笔试的成绩按区间[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其频率分布直方图如下图所示(频率分布直方图有污损),但是知道参加面试的人数为500,且笔试成绩在的人数为1440.
(1)根据频率分布直方图,估算竞聘者参加笔试的平均成绩;
(2)若在面试过程中每人最多有5次选题答题的机会,累计答题或答错3题即终止答题.答对3题者方可参加复赛.已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响.若他连续三次答题中答对一次的概率为$\frac{9}{64}$,求面试者甲答题个数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2-{e^x},x≤1}\end{array}}\right.$,若函数h(x)=f(x)-mx-2有且仅有一个零点,则实数m的取值范围是(-∞,-e]∪{0}∪{-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,F为线段BC的中点,CE=2EF,$DF=\frac{3}{5}AF$,设$\overrightarrow{AC}=a$,$\overrightarrow{AB}=b$,试用a,b表示$\overrightarrow{AE}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数$f(x)=\sqrt{2}(sinx+cosx)$,给出下列四个命题:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函数f(x)的图象关于直线$x=-\frac{3π}{4}$对称;
③存在φ∈R,使函数f(x+ϕ)的图象关于坐标原点成中心对称;
④函数f(x)的图象向左平移$\frac{π}{4}$就能得到y=-2cosx的图象.
其中正确命题的序号是②③.

查看答案和解析>>

同步练习册答案