精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,cos2C-2
2
cos(A+B)+2=0.
(1)求角C的大小;
(2)若b=
2
a
,△ABC的面积为
2
2
sinAsinB,求sinA及c的值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)已知等式利用二倍角的余弦函数公式及诱导公式化简,整理求出cosC的值,即可确定出C的度数;
(2)利用三角形面积公式列出关系式,把b=
2
a,sinC的值,以及已知面积代入整理表示出ac,再利用正弦定理化简求出c的值,由余弦定理求出a的值,进而确定出sinA的值即可.
解答: 解:(1)已知等式变形得:2cos2C-1+2
2
cosC+2=0,即2cos2C+2
2
cosC+1=0,
整理得:(
2
cosC+1)2=0,
解得:cosC=-
2
2

则C=
4

(2)∵b=
2
a,sinC=
2
2
,△ABC的面积为
2
2
sinAsinB,
1
2
absinC=
2
2
sinAsinB,即a2sinC=sinAsinB,
由正弦定理
a
sinA
=
c
sinC
,得到asinC=csinA,即a2sinC=acsinA,
可得ac=sinB,
由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
2
sinA,即ac=
2
sinA,
把a=
csinA
sinC
代入得:
c2sinA
sinC
=
2
sinA,即c2=
2
sinC=1,
解得:c=1,
由余弦定理得:c2=a2+b2-2abcosC,即1=a2+2a2+2a2,即a=
5
5

则sinA=
asinC
c
=
10
10
点评:此题考查了正弦、余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,定直线l经过点A(1,0),若对任意的实数m,定直线l被圆C截得的弦长始终为定值A,求得此定值A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b表示直线,α,β表示平面,P是空间一点,下面命题中正确的是(  )
A、a?α,则a∥α
B、a∥α,b?α,则a∥b
C、α∥β,a?α,b?β,则a∥b
D、P∈a,P∈β,a∥α,α∥β,则a?β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2x),
b
=(4,-x),则“x=
2
”是“
a
b
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各题:
(Ⅰ)求值:(0.0081)
1
4
-[(-9)2×(
7
8
)
0
]
1
2
×[
5
3
×81- 0.25+(3
3
8
)
2
3
]
1
2
-27
1
3

(Ⅱ)若x=
7-4
3
,求值:
x3-1
x2+x+1
-
x2-2x+1
x2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的奇函数y=f(x)是减函数,若f(1-a)+f(1-2a)≥0,则实数a的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下面的数阵,容易看出,第n行最右边的数是n2,那么第8行中间数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a=3,b=4,c=
37
,则该三角形的最大内角为(  )
A、
π
3
B、
π
6
C、
6
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,内角A、B.C所对边分别为a、b、c,己知A=
π
6
c=
3
,b=1.
(1)求a的长及B的大小;
(2)若0<x<B,求函数f(x)=2sinxcosx+2
3
cos2x-
3
的值域.

查看答案和解析>>

同步练习册答案