精英家教网 > 高中数学 > 题目详情
(2008•浦东新区一模)函数y=
1-(x+2)2
图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是 (  )
分析:根据平面几何切割线定理:从圆外一点做圆的切线和割线,则切线长是割线与它的圆外部分的比例中项.假设存在,则可计算出公比的范围,从而可下结论.
解答:解:根据平面几何切割线定理:从圆外一点做圆的切线和割线,则切线长是割线与它的圆外部分的比例中项.
鉴于此,从原点作该半圆的切线,切线长为:
3

设割线与半圆的另外两个交点到原点的距离分别是a和b,则b=aq2,且ab=(aq)2=3,所以aq=
3

所以q=
3
a

1≤a≤
3
,则 1≤q≤
3
;当
3
≤a≤3
时,
3
3
≤q≤1

考查四个选项,只有B选项不符合上述范围
故选B.
点评:本题的考点是等比关系的确定,主要课程等比数列的定义,等比中项及切割线定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•浦东新区二模)若函数f(x)=
2x,(x≥4)
f(x+3),(x<4)
,则f(log23)=
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区二模)一场特大暴风雪严重损坏了某铁路干线供电设备,抗灾指挥部决定在24小时内完成抢险工程.经测算,工程需要15辆车同时作业24小时才能完成,现有21辆车可供指挥部调配.
(1)若同时投入使用,需要多长时间能够完成工程?(精确到0.1小时)
(2)现只有一辆车可以立即投入施工,其余20辆车需要从各处紧急抽调,每隔40分钟有一辆车可以到达并投入施工,问:24小时内能否完成抢险工程?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区二模)不等式组
x+2y≤2
x-y≥1
y≥0
表示的平面区域中点P(x,y)到直线x+3y=9距离的最小值是
2
10
3
2
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区一模)已知函数f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)当a≥1时,判断函数f(x)在区间[0,+∞)上的单调性;
(3)若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案