精英家教网 > 高中数学 > 题目详情
9.4月10日,2015《中国汉字听写大会》全国巡回赛正式启动,并拉开第三届“汉听大会”全国海选的帷幕.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示.
(Ⅰ)求频率分布直方图中a的值,试估计全市学生参加汉字听写考试的平均成绩;
(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上的概率;
(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上(含80分)的人数记为X,求X的分布列及数学期望.(注:频率可以视为相应的概率)

分析 (Ⅰ)利用概率和为1,可求a;根据频率分布直方图,计算数据的平均数即可;
(Ⅱ)计算被抽到的同学考试成绩在80(分)以上的概率;
(Ⅲ)得出X可能的取值,求出X的分布列与期望E(X).

解答 解:(Ⅰ)由题意,(2a+3a+7a+6a+2a)×10=1,∴a=0.005;
估计全市学生参加汉字听写考试的平均成绩为:
0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=76.5…4分
(Ⅱ)(Ⅱ)设被抽到的这名同学考试成绩在80(分)以上为事件A.
P(A)=0.025×10+0.015×10=0.4;
∴被抽到的这名同学考试成绩在80(分)以上的概率为0.4; …(6分)
(Ⅲ)由(Ⅱ)知,从参加考试的同学中随机抽取1名同学的成绩在80(分)以上的概率为P=0.4;
X可能的取值是0,1,2,3;
∴P(X=0)=${C}_{3}^{0}•0.{4}^{0}•0.{6}^{3}$=$\frac{27}{125}$;
P(X=1)=${C}_{3}^{1}•0.4•0.{6}^{2}$=$\frac{54}{125}$;
P(X=2)=${C}_{3}^{2}•0.{4}^{2}•0.6$=$\frac{36}{125}$;
P(X=3)=${C}_{3}^{3}•0.{4}^{3}$=$\frac{8}{125}$.
∴X的分布列为:

X0123
P$\frac{27}{125}$$\frac{54}{125}$$\frac{36}{125}$$\frac{8}{125}$
…(12分)
所以 E(X)=0×$\frac{27}{125}$+1×$\frac{54}{125}$+2×$\frac{36}{125}$+3×$\frac{8}{125}$=$\frac{6}{5}$…(13分)

点评 本题考查了频率布直方图应用问题,也考查了离散型随机变量的分布列问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知矩阵M=$(\begin{array}{l}{1}&{m}\\{n}&{1}\end{array})$,若向量$(\begin{array}{l}{-2}\\{1}\end{array})$在矩阵M的变换下得到向量$(\begin{array}{l}{1}\\{3}\end{array})$.
(Ⅰ) 求矩阵M;
(Ⅱ) 设矩阵$N(\begin{array}{l}{1}&{0}\\{2}&{1}\end{array})$,求直线x-y+1=0在矩阵NM的对应变换作用下得到的曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.采用随机模拟试验的方法估计三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为0.25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xoy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|+|CD|=5.
(1)求椭圆的方程;
(2)求由A,B,C,D四点构成的四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,点G在椭圆C上,且$\overrightarrow{G{F}_{1}}$•$\overrightarrow{G{F}_{2}}$=0,△GF1F2的面积为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=k(x-1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当$\frac{{k}_{1}{k}_{2}}{k}$最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=-4.
(Ⅰ)p的值;
(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在四边形ABCD中,|$\overrightarrow{CD}$|=4,|$\overrightarrow{AD}$|=5,$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\overrightarrow{CB}$•$\overrightarrow{CD}$=0,令|$\overrightarrow{BC}$|=x,|$\overrightarrow{BA}$|=y,则曲线y=f(x)可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:填空题

的展开式的常数项为_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax-bex,g(x)=x2+ax(a,b∈R,e为自然对数的底)
(1)若对任意的x∈[1,3],不等式f(x)≤g(x)恒成立,求实数b的取值范围
(2)试判断函数f(x)的单调性
(3)当a=1时,若函数f(x)有两个不同零点x1,x2,求证:x1+x2>2.

查看答案和解析>>

同步练习册答案