分析 (Ⅰ)利用概率和为1,可求a;根据频率分布直方图,计算数据的平均数即可;
(Ⅱ)计算被抽到的同学考试成绩在80(分)以上的概率;
(Ⅲ)得出X可能的取值,求出X的分布列与期望E(X).
解答 解:(Ⅰ)由题意,(2a+3a+7a+6a+2a)×10=1,∴a=0.005;
估计全市学生参加汉字听写考试的平均成绩为:
0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=76.5…4分
(Ⅱ)(Ⅱ)设被抽到的这名同学考试成绩在80(分)以上为事件A.
P(A)=0.025×10+0.015×10=0.4;
∴被抽到的这名同学考试成绩在80(分)以上的概率为0.4; …(6分)
(Ⅲ)由(Ⅱ)知,从参加考试的同学中随机抽取1名同学的成绩在80(分)以上的概率为P=0.4;
X可能的取值是0,1,2,3;
∴P(X=0)=${C}_{3}^{0}•0.{4}^{0}•0.{6}^{3}$=$\frac{27}{125}$;
P(X=1)=${C}_{3}^{1}•0.4•0.{6}^{2}$=$\frac{54}{125}$;
P(X=2)=${C}_{3}^{2}•0.{4}^{2}•0.6$=$\frac{36}{125}$;
P(X=3)=${C}_{3}^{3}•0.{4}^{3}$=$\frac{8}{125}$.
∴X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
点评 本题考查了频率布直方图应用问题,也考查了离散型随机变量的分布列问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com