分析 (1)利用已知条件列出方程求出,a、b、c,即可得到双曲线方程.
(2)设出直线方程,与双曲线联立,利用三角形的面积求解直线方程即可.
(3)利用(2)通过直线垂直,斜率乘积为:-1.列出方程求解即可.
解答 解:(1)双曲线C的渐近线方程为y=±x,一条准线方程为$x=\frac{{\sqrt{2}}}{2}$.
可得a=b,$\frac{{a}^{2}}{c}$=$\frac{\sqrt{2}}{2}$,$\frac{c}{a}=\sqrt{2}$,解得,a=b=1,c=$\sqrt{2}$.
双曲线的方程为:x2-y2=1.
(2)设直线方程为:x=my-2,
由题意可得:$\left\{\begin{array}{l}{x=my-2}\\{{x}^{2}-{y}^{2}=1}\end{array}\right.$,
可得(m2-1)y2-4my+3=0,可得:y1+y2=$\frac{4m}{{m}^{2}-1}$,y1y2=$\frac{3}{{m}^{2}-1}$,
|y1-y2|=$\sqrt{\frac{16{m}^{2}-12{m}^{2}+12}{({m}^{2}-1)^{2}}}$=$\frac{\sqrt{12+4{m}^{2}}}{|{m}^{2}-1|}$,
三角形OAB的面积为2$\sqrt{3}$,可得:$\frac{1}{2}×2×$$\frac{\sqrt{12+4{m}^{2}}}{|{m}^{2}-1|}$=$2\sqrt{3}$,解得m=±$\frac{\sqrt{21}}{3}$.
直线l的方程:x=±$\frac{\sqrt{21}}{3}$y-2.
(3)由(2)可知y1y2=$\frac{3}{{m}^{2}-1}$,
x1x2=(my1-2)(my2-2)=m2y1y2-2m(y1+y2)+4=$\frac{3{m}^{2}}{{m}^{2}-1}-\frac{8{m}^{2}}{{m}^{2}-1}+4$=$\frac{-{m}^{2}-4}{{m}^{2}-1}$,
如果OA⊥OB,可得:$\frac{\frac{3}{{m}^{2}-1}}{\frac{-{m}^{2}-4}{{m}^{2}-1}}=-1$,
解得:m2=-1,
直线不存在.
点评 本题考查直线椭圆双曲线的位置关系的综合应用,考查分析问题解决问题的能力,转化思想的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:选择题
某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com