精英家教网 > 高中数学 > 题目详情
27 
2
3
+16 -
1
2
-(
1
2
-2-(
8
27
 -
2
3
=
 
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:根据有理数指数幂的定义,分别求出各项的值,加减可得答案.
解答: 解:27 
2
3
+16 -
1
2
-(
1
2
-2-(
8
27
 -
2
3
=9+
1
4
-4-
9
4
=3;
故答案为:3
点评:本题考查的知识点是有理数指数幂的化简求值,熟练掌握有理数指数幂的运算法则是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

高为2的直三棱柱的俯视图是一个边长为2的正三角形,如图所示,则这个直三棱柱的正视图的面积是(  )
A、4
B、2
3
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前项n和sn=n2+4n(n∈N*),数列{bn}为等比数列,首项b1=2,公比为q(q>0),且满足b2,b3+4q,b4成等差数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3(an-3)•bn
4
,记数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x3,x<0
-tanx,0≤x<
π
2
,则f(f(
π
4
))
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
b
x
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.则曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:函数f(x)=logax在(0,+∞)上是增函数;命题Q:?x∈R,使得x2-4x+A=0.
(1)若命题“P且P”为真,求实数a的取值范围;
(2)若命题“P或Q”为真,“P且Q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个正数a,b,可按规则c=an+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则再扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,若p>q>0,对数p和数q经过10次操作后,扩充所得的数为(p+1)m(q+1)n-1,其中m,n是正整数,则m+n的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为考察高中生的性别与是否喜欢数学课程之间的关系,在湖南某所示范性高中的学生中随机抽取50名学生,得到下表,那么下列判断正确的是(  )
喜欢数学课程不喜欢数学课程
1310
720
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
临界值表:
P(K2≥k00.1000.0500.0250.010
    k02.7063.8415.0246.635
A、约有5%的把握认为“性别与喜欢数学课程之间有关系”
B、约有99%的把握认为“性别与喜欢数学课程之间有关系”
C、在犯错误的概率不超过0.050的前提下认为“性别与喜欢数学课程之间有关系”
D、在犯错误的概率不超过0.010的前提下认为“性别与喜欢数学课程之间有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数A={x||2x-1|<1},B={x|x2-2ax+a2-1>0},若A⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案