精英家教网 > 高中数学 > 题目详情
已知两个正数a,b,可按规则c=an+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则再扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,若p>q>0,对数p和数q经过10次操作后,扩充所得的数为(p+1)m(q+1)n-1,其中m,n是正整数,则m+n的值是
 
考点:类比推理
专题:计算题,推理和证明
分析:p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1;第二次得:c2=(p+1)2(q+1)-1;所得新数大于任意旧数,故经过10次扩充,所得数为:(q+1)55(p+1)89-1,故可得结论.
解答: 解:因为p>q>0,所以第一次得:c1=pq+p+q=(q+1)(p+1)-1,
因为c>p>q,所以第二次得:c2=(c1+1)(p+1)-1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)-1,
所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)-1=(p+1)3(q+1)2-1,
第四次可得:c4=(c3+1)(c2-1)-1=(p+1)5(q+1)3-1,
故经过10次扩充,所得数为:(q+1)55(p+1)89-1,
因为经过6次操作后扩充所得的数为(q+1)m(p+1)n-1(m,n为正整数),
所以m=55,n=89,
所以m+n=144.
故答案为:144
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力,求出经过6次操作后扩充所得的数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x|x|+x3+2在[-2013,2013]上的最大值与最小值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=10,公差d=-2,则前n项和Sn的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

27 
2
3
+16 -
1
2
-(
1
2
-2-(
8
27
 -
2
3
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告费用x与销售额y的统计数据如表:
x2345
y26394954
根据上表利用最小二乘法可得回归方程
?
y
=
?
b
x+
?
a
,据此模型预报广告费用为7万元时销售额为74.9万元,则据此模型预报,广告费每增加1万元,销售额大约增加(  )
A、9.1万元B、9.4万元
C、9.7万元D、10万元

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等差数列{an}满足:a1,a2,a4成等比数列,且a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2(1+
1
an
)
,设Tn=b1+b2+…+bn,求数列{
1
2Tn2Tn+1
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=1+
2x+1
2x+1
+sinx在区间[-k,k](k>0)上的值域为[m,n],则m+n=(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线y=x2和直线y=0,x=1,y=
1
4
所围成的封闭图形的面积为(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx(sinx+cosx),x∈R.
(1)求f(x)的最小正周期T和最大值M;
(2)若f(
α
2
+
π
8
)=-
1
3
,求cosα的值.

查看答案和解析>>

同步练习册答案