分析 (I)计算am,am+1+am+2,利用等差数列的性质计算公差d,再代入求和公式计算m;
(II)求出an,bn,得出数列{(an+6)•bn}的通项公式,利用错位相减法计算.
解答 解:(Ⅰ)∵Sm-1=-4,Sm=0,Sm+2=14,
∴am=Sm-Sm-1=4,am+1+am+2=Sm+2-Sm=14,
设数列{an}的公差为d,则2am+3d=14,
∴d=2.
∵Sm=$\frac{{a}_{1}+{a}_{m}}{2}$×m=0,∴a1=-am=-4,
∴am=-4+2(m-1)=4,
解得m=5.
(Ⅱ)由(Ⅰ)知an=-4+2(n-1)=2n-6,
∴n-3=log2bn,即bn=2n-3.
∴(an+6)•bn=2n•2n-3=n•2n-2.
设数列{(an+6)•bn}的前n项和为Tn,
∴Tn=1×$\frac{1}{2}$+2×1+3×2+…+…n•2n-2,①
∴2Tn=1×1+2×2+3×22+…+n•2n-1,②
①-②,得-Tn=$\frac{1}{2}$+1+2+…+2n-2-n•2n-1
=$\frac{\frac{1}{2}(1-{2}^{n})}{1-2}$-n•2n-1
=(1-n)•2n-1-$\frac{1}{2}$.
∴Tn=(n-1)•2n-1+$\frac{1}{2}$.
点评 本题考查了等差数列,等比数列的性质,数列求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 最小值 20 | B. | 最小值 200 | C. | 最大值 20 | D. | 最大值 200 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a?α,若b∥a,则b∥α | B. | α⊥β,α∩β=c,b⊥c,则b⊥β | ||
| C. | a⊥b,b⊥c,则a∥c | D. | a∩b=A,a?α,b?α,a∥β,b∥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60 | B. | 70 | C. | 80 | D. | 100 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com