| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
分析 平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的内切球半径等于这个正四面体高的$\frac{1}{4}$,证明时连接球心与正四面体的四个顶点.把正四面体分成四个高为r的三棱锥,正四面体的体积,就是四个三棱锥的体积的和,求解即可.
解答
解:从平面图形类比空间图形,从二维类比三维,
可得如下结论:正四面体的内切球半径等于这个正四面体高的$\frac{1}{4}$.
证明如下:球心到正四面体一个面的距离即球的半径r,连接球心与正四面体的四个顶点.
把正四面体分成四个高为r的三棱锥,所以4×$\frac{1}{3}$S•r=$\frac{1}{3}$•S•h,r=$\frac{1}{4}$h.
(其中S为正四面体一个面的面积,h为正四面体的高)
故选B.
点评 主要考查知识点:类比推理,简单几何体和球,考查计算能力,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $6\sqrt{2}$ | B. | 8 | C. | $\sqrt{21}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9π | B. | 18π | C. | 36π | D. | 144π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com