精英家教网 > 高中数学 > 题目详情
15.设函数f(x)是定义在(0,+∞)上的可导函数,其导函数为f′(x),f(x)>0恒成立,且有2f(x)>xf′(x)+x,则当x>0时,下列不等关系一定正确的是(  )
A.4xf(x2)≤x4f(2xB.e2xf($\frac{1}{x}$)≥$\frac{1}{{x}^{2}}$f(ex
C.xf($\sqrt{x}$)≤f(x)D.4xf(x+1)≤(x2+2x+1)f(2$\sqrt{x}$)

分析 x>0时,可得2xf(x)-x2f′(x)>x2>0,令g(x)=$\frac{{x}^{2}}{f(x)}$,则f′(x)=$\frac{2xf(x)-{x}^{2}f′(x)}{{f}^{2}(x)}$>0.即函数g(x)在(0,+∞)单调递增,可得g(x+1)≥g(2$\sqrt{x}$),即可得到结论.

解答 解:当x>0时,有2f(x)>xf′(x)+x恒成立,⇒有2xf(x)-x2f′(x)>x2>0,
令g(x)=$\frac{{x}^{2}}{f(x)}$,则f′(x)=$\frac{2xf(x)-{x}^{2}f′(x)}{{f}^{2}(x)}$>0.
∴函数g(x)在(0,+∞)单调递增,
∵x>0,∴$x+1≥2\sqrt{x}$,即g(x+1)≥g(2$\sqrt{x}$)
⇒$\frac{(x+1)^{2}}{f(x+1)}≥\frac{(2\sqrt{x})^{2}}{f(2\sqrt{x})}$,∵f(x)>0恒成立.∴f(x+1)>0,f(2$\sqrt{x}$)>0,
∴(x+1)2f(2$\sqrt{x}$)≥4xf(x+1).
故选:D.

点评 本题考查了构造新函数,解函数不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,有下列结论:
①若a2=b2+c2+bc,则∠A为60°;
②若a2+b2>c2,则△ABC为锐角三角形;
③若A:B:C=1:2:3,则a:b:c=1:2:3,
④在△ABC中,b=2,B=45°,若这样的三角形有两个,则边a的取值范围为(2,2$\sqrt{2}$)
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是(  )
A.$\frac{1}{27}$B.$\frac{2}{27}$C.$\frac{2}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-2tan(2x+φ)(|φ|<π),若$f(\frac{π}{16})=-2$,则f(x)的一个单调递减区间是(  )
A.$(\frac{3π}{16},\frac{11π}{16})$B.$(\frac{π}{16},\frac{9π}{16})$C.$(-\frac{3π}{16},\frac{5π}{16})$D.$(\frac{π}{16},\frac{5π}{16})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Sn是等差数列{an}的前n项和,若a1=-2014,$\frac{{S}_{2014}}{2014}$-$\frac{{S}_{2008}}{2008}$=6,则S2017=4034.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=xlnx,其中x∈(0,e](e是自然常数).
(Ⅰ)判断函数f(x)的单调性并求出其极小值;
(Ⅱ)若存在x0∈(0,e],使f(x0)≤a,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列$\sqrt{3},3,\sqrt{15}$,…,$\sqrt{3(2n-1)}$,那么9是数列的第14项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)的图象如图所示,f′(x)是f(x)的导函数,则下列数值排序正确的是(  )
A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设正实数x,y满足x+2y=xy,若m2+2m<x+2y恒成立,则实数m的取值范围是(-4,2).

查看答案和解析>>

同步练习册答案