分析 根据题意,把x+2y=xy化为$\frac{1}{y}$+$\frac{2}{x}$=1,利用基本不等式求出x+2y的最小值,再转化不等式m2-2m<x+2y,求解关于m的不等式即可.
解答 解:正实数x,y满足x+2y=xy,
∴$\frac{1}{y}$+$\frac{2}{x}$=1,
∴x+2y=(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=2+2+$\frac{4y}{x}$+$\frac{x}{y}$≥4+2$\sqrt{\frac{4y}{x}•\frac{x}{y}}$=8,
当且仅当x=2y,即x=4,y=2时等号成立.
不等式m2+2m<x+2y恒成立,
即m2+2m<8恒成立,
解得-4<m<2;
∴实数m的取值范围是(-4,2).
故答案为:(-4,2).
点评 本题考查恒成立问题,考查了利用基本不等式求最值,关键是“1”的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4xf(x2)≤x4f(2x) | B. | e2xf($\frac{1}{x}$)≥$\frac{1}{{x}^{2}}$f(ex) | ||
| C. | xf($\sqrt{x}$)≤f(x) | D. | 4xf(x+1)≤(x2+2x+1)f(2$\sqrt{x}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 20 | C. | 31 | D. | 43 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}+4ln2$ | B. | 4(1-ln2) | C. | 2(1-ln2) | D. | 4(2ln2-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 8 | D. | -8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com