精英家教网 > 高中数学 > 题目详情
10.函数$f(x)={2^x}+xln\frac{1}{4}$在区间[-2,2]上的最大值为(  )
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

分析 利用导数求出极值,然后求区间端点处的函数值,进行大小比较即可.

解答 解:∵f(x)=2x+xln$\frac{1}{4}$,
∴f′(x)=2xln2-ln4=ln2(2x-2),
令f′(x)=0,
解得x=1,
∴f(x)在[-2,1]上单调递减,在[1,2]上单调递增,
∵f(2)=4-2ln4=4-4ln2,f(-2)=$\frac{1}{4}$+2ln4=$\frac{1}{4}$+4ln2,
∴f(-2)-f(2)=$\frac{1}{4}$+4ln2-4+4ln2=$\frac{1}{4}$+4ln4-4=$\frac{1}{4}$+4(ln4-1)>0,
∴∴f(x)max=f(-2)=$\frac{1}{4}$+4ln2,
故选:A

点评 本题考查利用导数求函数在闭区间上的最值问题,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=xlnx,其中x∈(0,e](e是自然常数).
(Ⅰ)判断函数f(x)的单调性并求出其极小值;
(Ⅱ)若存在x0∈(0,e],使f(x0)≤a,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z在眏射f下的象为(2+i)z,则1-2i的原象为(  )
A.-iB.iC.4-3iD.4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4cosωxsin(ωx-$\frac{π}{6}$)(ω>0)的最小正周期是π.
(1)求函数f(x)在区间x∈(0,π)的单调递增区间;
(2)求f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设正实数x,y满足x+2y=xy,若m2+2m<x+2y恒成立,则实数m的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,x)$,若$\overrightarrow a⊥\overrightarrow b$,则x=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$sin(α-\frac{3π}{2})<0,tanα<0$,则角α是第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=2x-ex在x=0处的切线的倾斜角为(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y∈R+且x+y=4,则使不等式$\frac{1}{x}+\frac{4}{y}$≥m恒成立的实数m的取值范围为(  )
A.(2,+∞)B.(-∞,$\frac{7}{4}$]C.(3,+∞)D.(-∞,$\frac{9}{4}$]

查看答案和解析>>

同步练习册答案