精英家教网 > 高中数学 > 题目详情
1.复数z在眏射f下的象为(2+i)z,则1-2i的原象为(  )
A.-iB.iC.4-3iD.4+3i

分析 设1-2i的原象为a+bi,则(2+i)(a+bi)=1-2i,根据复数相等的充要条件,构造方程组,可得答案.

解答 解:设1-2i的原象为a+bi,
则(2+i)(a+bi)=1-2i,
即2a-b+(a+2b)i=1-2i,
故$\left\{\begin{array}{l}2a-b=1\\ a+2b=-2\end{array}\right.$,
解得:$\left\{\begin{array}{l}a=0\\ b=-1\end{array}\right.$,
故1-2i的原象为-i,
故选:A

点评 本题考查的知识点是映射的定义,复数的运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某养猪厂建造一间背面靠墙的长方形猪圈,已知猪圈地面面积为18平方米,将猪圈分割成(如图所示)六个小猪圈,猪圈高度为1米,猪圈每平方米的造价为500元,且不计猪圈背面和地面的费用与猪圈的厚度,问怎样设计总造价最低,最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$tan({x+\frac{π}{4}})=\frac{1+tanx}{1-tanx}$,y=tanx的周期T=π,函数y=f(x)满足$f({x+a})=\frac{1+f(x)}{1-f(x)}$,x∈R,(a是非零常数),则函数y=f(x)的周期是4|a|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P,A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上不同的三点,且A,B关于原点对称,若直线PA,PB的斜率乘积${k_{PA}}•{k_{PB}}=\frac{3}{4}$,则该双曲线的离心率是(  )
A.2B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设数列{an}是等比数列,且an>0,Sn为其前n项和.已知a2a4=16,$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$,则S5等于(  )
A.40B.20C.31D.43

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$,曲线C的极坐标方程为ρ=2cosθ.
(1)写出直线l的直角坐标方程和曲线C的普通方程;
(2)求直线l与曲线C的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在所有的两位数中,十位数字大于个位数字的两位数共有(  )
A.50B.45C.36D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)={2^x}+xln\frac{1}{4}$在区间[-2,2]上的最大值为(  )
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设$\overrightarrow a=({3,4}),\overrightarrow b=({-1,7})$.
(1)求$\overrightarrow a•\overrightarrow b$;
(2)求$\overrightarrow a,\overrightarrow b$的夹角.

查看答案和解析>>

同步练习册答案