6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨1£©Ð´³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýtÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ2=2¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£®
£¨2£©ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£¬ÓëÖ±ÏßÁªÁ¢·½³Ì×飬ÓÉ´ËÄÜÇó³öÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±ê£®

½â´ð ½â£º£¨1£©ÒòΪֱÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$£¬
¡à$t=y+\sqrt{3}$£¬´úÈë$x=\frac{{\sqrt{3}}}{3}t$£¬
¡à$3x-\sqrt{3}y=3$£¬¼´$\sqrt{3}x-y-\sqrt{3}=0$£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ$\sqrt{3}x-y-\sqrt{3}=0$£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¡à¦Ñ2=2¦Ñcos¦È£¬
¡àÇúÏßCµÄÆÕͨ·½³Ìx2+y2=2x£¬¼´x2-2x+y2=0£®
£¨2£©ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£¬
¡à$\left\{\begin{array}{l}\sqrt{3}x-y-\sqrt{3}=0\\{£¨{x-1}£©^2}+{y^2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{3}{2}\\ y=\frac{{\sqrt{3}}}{2}\end{array}\right.$»ò$\left\{\begin{array}{l}x=\frac{1}{2}\\ y=-\frac{{\sqrt{3}}}{2}\end{array}\right.$£¬
¡àÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄÖ±½Ç×ø±êΪ$£¨{\frac{3}{2}£¬\frac{{\sqrt{3}}}{2}}£©£¬£¨{\frac{1}{2}£¬-\frac{{\sqrt{3}}}{2}}£©$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì¡¢ÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÇúÏߵĽ»µãµÄÖ±½Ç×ø±êµÄÇ󷨣¬Éæ¼°µ½¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®½«È«ÌåÕýÕûÊýai£¬j´Ó×óÏòÓÒÅųÉÒ»¸öÖ±½ÇÈý½ÇÐÎÊýÕó£º
°´ÕÕÒÔÉÏÅÅÁеĹæÂÉ£¬Èô¶¨Òå$f£¨i£¬j£©={2^{{a_{i£¬j}}}}$£¬Ôòlog2$\frac{f£¨20£¬3£©}{4}$=191£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýy=f£¨x£©ÔÚÆä¶¨ÒåÓò$[{-\frac{3}{2}£¬3}]$Äڿɵ¼£¬ÆäͼÏóÈçͼËùʾ£¬¼Çy=f£¨x£©µÄµ¼º¯ÊýΪy=f'£¨x£©£¬Ôò²»µÈʽf¡ä£¨x£©¡Ü0µÄ½â¼¯ÊÇ[-$\frac{1}{3}$£¬1]¡È[2£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Æ½ÐÐÓÚÖ±Ïßx+2y+1=0£¬ÇÒÓëÔ²x2+y2=5ÏàÇеÄÖ±Ïߵķ½³ÌÊÇ£¨¡¡¡¡£©
A£®$x+2y+\sqrt{5}=0$»ò$x+2y-\sqrt{5}=0$B£®$x-2y+\sqrt{5}=0$»ò$x-2y-\sqrt{5}=0$
C£®x+2y+5=0»òx+2y-5=0D£®x-2y+5=0»òx-2y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´ÊýzÔÚ±jÉäfϵÄÏóΪ£¨2+i£©z£¬Ôò1-2iµÄÔ­ÏóΪ£¨¡¡¡¡£©
A£®-iB£®iC£®4-3iD£®4+3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®tan23¡ã+tan22¡ã+tan23¡ãtan22¡ã=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=4cos¦Øxsin£¨¦Øx-$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©µÄ×îСÕýÖÜÆÚÊǦУ®
£¨1£©Çóº¯Êýf£¨x£©ÔÚÇø¼äx¡Ê£¨0£¬¦Ð£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Çóf£¨x£©ÔÚ$[{\frac{¦Ð}{6}£¬\frac{2¦Ð}{3}}]$ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèÏòÁ¿$\overrightarrow a=£¨-1£¬3£©$£¬$\overrightarrow b=£¨2£¬x£©$£¬Èô$\overrightarrow a¡Í\overrightarrow b$£¬Ôòx=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ô²C1£º£¨x-m£©2+£¨y+2£©2=9ÓëÔ²C2£º£¨x+1£©2+£¨y-m£©2=4ÄÚÇУ¬ÔòmµÄֵΪ-2»ò-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸