精英家教网 > 高中数学 > 题目详情
16.将全体正整数ai,j从左向右排成一个直角三角形数阵:
按照以上排列的规律,若定义$f(i,j)={2^{{a_{i,j}}}}$,则log2$\frac{f(20,3)}{4}$=191.

分析 先找到数的分布规律,求出第n-1行结束的时候一共出现的数的个数,再求第n行从左向右的第3个数,代入n=20可得,再根据对数的运算性质可求答案

解答 解:由排列的规律可得,第n-1行结束的时候共排了1+2+3+…+(n-1)=$\frac{n(n-1)}{2}$
a20,3表示第20行,第三个数,即为$\frac{20×19}{2}$+3=193,
∴f(20,3)=2193
∴$\frac{f(20,3)}{4}$=2191
∴log22191=191,
故答案为:191

点评 本题借助于一个三角形数阵考查等差数列的应用以及对数的运算性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若关于x的不等式|x-1|+x≤a无解,则实数a的取值范围是(  )
A.(-∞,1)B.(∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),∠AOB=$\frac{π}{3}$.现有一动点C在单位圆的劣弧$\widehat{AB}$上运动,设∠AOC=α.
(1)若tanα=$\frac{1}{3}$,求$\overrightarrow{OB}$•$\overrightarrow{OC}$的值;
(2)若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列命题:①若a<b<0,则$\frac{1}{a}$<$\frac{1}{b}$;②若a>0,b>0,则$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$;③若a<b<0,则a2>ab>b2;④lg9•lg 11<1;⑤若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则a>0,b<0;⑥正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则x+2y的最小值为6.其中正确命题的序号是②③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某养猪厂建造一间背面靠墙的长方形猪圈,已知猪圈地面面积为18平方米,将猪圈分割成(如图所示)六个小猪圈,猪圈高度为1米,猪圈每平方米的造价为500元,且不计猪圈背面和地面的费用与猪圈的厚度,问怎样设计总造价最低,最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,AC=8,BC=5,面积S△ABC=10$\sqrt{3}$,则$\overrightarrow{BC}•\overrightarrow{CA}$=±20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(cosx,sinx)$,函数$f(x)=\overrightarrow a•\overrightarrow b-1$.
(1)若f(x)=0,求x的集合;
(2)若$x∈[0,\frac{π}{2}]$,求f(x)的单调区间及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx-3的某一个对称中心,并利用对称中心的上述定义,可得到$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$的值为(  )
A.-4033B.4033C.8066D.-8066

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$,曲线C的极坐标方程为ρ=2cosθ.
(1)写出直线l的直角坐标方程和曲线C的普通方程;
(2)求直线l与曲线C的交点的直角坐标.

查看答案和解析>>

同步练习册答案