精英家教网 > 高中数学 > 题目详情
1.在△ABC中,AC=8,BC=5,面积S△ABC=10$\sqrt{3}$,则$\overrightarrow{BC}•\overrightarrow{CA}$=±20.

分析 由面积S△ABC=10$\sqrt{3}$,求出sin∠ACB,进一步求出cos∠ACB,根据向量数量积的计算公式便可求出$\overrightarrow{BC}•\overrightarrow{CA}$.

解答 解:∵S△ABC=$\frac{1}{2}AC•BC•sin∠ACB$=$\frac{1}{2}×8×5sin∠ACB$=10$\sqrt{3}$,
∴$sin∠ACB=\frac{\sqrt{3}}{2}$.
∴$cos∠ACB=±\frac{1}{2}$.
∴$\overrightarrow{BC}•\overrightarrow{CA}$=BC•CA•cos∠ACB=±20.
故答案为:±20.

点评 本题考查了解三角形的运算,及向量运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.数列{an}的前n项和${S_n}=2{n^2}-3n({n∈{N^*}})$,则an=4n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆的中心为坐标原点,长、短轴长之比为$\frac{2}{1}$,一个焦点是(0,-2),试求椭圆的离心率和椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8,则a7=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将全体正整数ai,j从左向右排成一个直角三角形数阵:
按照以上排列的规律,若定义$f(i,j)={2^{{a_{i,j}}}}$,则log2$\frac{f(20,3)}{4}$=191.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(2ωx+φ)-1$(ω>0,|φ|<\frac{π}{2})$的最小正周期为$\frac{π}{2}$,图象过点$(0,-\frac{1}{2})$.
(1)求ω、φ的值和f(x)的单调增区间;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若函数F(x)=g(x)+k在区间$[0,\frac{π}{2}]$上有且只有两个不同零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2017年实验中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4个,另两堆每堆2个,一共有多少种不同分堆方法(  )
A.C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$B.C${\;}_{3}^{1}$C${\;}_{8}^{2}$
C.$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$D.$\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinx=$\frac{3}{5}$,$x∈(\frac{π}{2},π)$,求cos2x和$tan(x+\frac{π}{4})$值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.tan23°+tan22°+tan23°tan22°=1.

查看答案和解析>>

同步练习册答案