精英家教网 > 高中数学 > 题目详情
4.给出下列命题:①若a<b<0,则$\frac{1}{a}$<$\frac{1}{b}$;②若a>0,b>0,则$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$;③若a<b<0,则a2>ab>b2;④lg9•lg 11<1;⑤若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则a>0,b<0;⑥正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则x+2y的最小值为6.其中正确命题的序号是②③④⑤.

分析 利用不等式的性质与基本不等式对①②③④⑤⑥逐项判断即可.

解答 解:①若a<b<0,则$\frac{1}{a}$>$\frac{1}{b}$,故①错误;
②若a>0,b>0,则$\frac{a+b}{2}$≥$\sqrt{ab}$(当且仅当a=b时取等号);
又$\sqrt{ab}$-$\frac{ab}{a+b}$=$\sqrt{ab}$(1-$\frac{\sqrt{ab}}{a+b}$)≥$\sqrt{ab}$(1-$\frac{\sqrt{ab}}{2\sqrt{ab}}$)=$\frac{1}{2}$$\sqrt{ab}$>0≥0,
所以$\sqrt{ab}$≥$\frac{ab}{a+b}$,综上,$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$,故②正确;
③若a<b<0,则a2>ab>0,ab>b2>0,
因此,a2>ab>b2,故③正确;
④lg9•lg 11<($\frac{lg9+lg11}{2}$)2=${(\frac{lg99}{2})}^{2}$<${(\frac{lg100}{2})}^{2}$=1,故④正确;
⑤若a>b,$\frac{1}{a}$>$\frac{1}{b}$?$\frac{1}{a}$-$\frac{1}{b}$>0?$\frac{b-a}{ab}$>0?$\frac{a-b}{ab}$<0,则ab<0,所以a>0,b<0,故⑤正确;
⑥正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则x+2y=(x+2y)($\frac{1}{x}$+$\frac{1}{y}$)=1+2+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{2}$,故其最小值为3+2$\sqrt{2}$,故⑥错误.
综上所述,正确命题的序号是:②③④⑤,
故答案为:②③④⑤.

点评 本题考查命题的真假判断与应用,突出考查不等式的性质与基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆$M:\frac{x^2}{2}+{y^2}=1$左、右焦点分别为F1、F2,点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点;
(1)求△ABF2的周长;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:$\frac{1}{k_1}-\frac{3}{k_2}=2$;
(3)问直线l是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$|\overrightarrow a|=2$,$|\overrightarrow b|=1$,且$\overrightarrow a$与$\overrightarrow b$夹角为60°,则$|2\overrightarrow a-\overrightarrow b|$=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆的中心为坐标原点,长、短轴长之比为$\frac{2}{1}$,一个焦点是(0,-2),试求椭圆的离心率和椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x与y之间的一组数据:
x0246
ya353a
已求得关于y与x的线性回归方程y=1.2x+0.4,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8,则a7=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将全体正整数ai,j从左向右排成一个直角三角形数阵:
按照以上排列的规律,若定义$f(i,j)={2^{{a_{i,j}}}}$,则log2$\frac{f(20,3)}{4}$=191.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2017年实验中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4个,另两堆每堆2个,一共有多少种不同分堆方法(  )
A.C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$B.C${\;}_{3}^{1}$C${\;}_{8}^{2}$
C.$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$D.$\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平行于直线x+2y+1=0,且与圆x2+y2=5相切的直线的方程是(  )
A.$x+2y+\sqrt{5}=0$或$x+2y-\sqrt{5}=0$B.$x-2y+\sqrt{5}=0$或$x-2y-\sqrt{5}=0$
C.x+2y+5=0或x+2y-5=0D.x-2y+5=0或x-2y-5=0

查看答案和解析>>

同步练习册答案