| A. | 2 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{7}}}{2}$ | D. | $2\sqrt{2}$ |
分析 设出点A,B的坐标,求出斜率,将点的坐标代入方程,两式相减,再结合kPA•kPB=$\frac{3}{4}$,即可求得结论
解答 解:由题意,设A(x1,y1),P(x2,y2),则B(-x1,-y1)
∴kPA•kPB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}•\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}=\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$
∵$\frac{{{x}_{1}}^{2}}{{a}^{2}}-\frac{{{y}_{1}}^{2}}{{b}^{2}}=1$,$\frac{{{x}_{2}}^{2}}{{a}^{2}}-\frac{{{y}_{2}}^{2}}{{b}^{2}}=1$,∴两式相减可得$\frac{{{y}_{2}}^{2}-{{y}_{1}}^{2}}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}=\frac{{b}^{2}}{{a}^{2}}$
∵kPA•kPB=$\frac{3}{4}$,∴$\frac{{b}^{2}}{{a}^{2}}=\frac{3}{4}$,∴,∴e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}=\frac{\sqrt{7}}{2}$.
故选:C.
点评 本题考查双曲线的方程,考查双曲线的几何性质,离心率的求解,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<f′(2)<f′(3)<f(3)-f(2) | B. | 0<f′(3)<f(3)-f(2)<f′(2) | C. | 0<f′(3)<f′(2)<f(3)-f(2) | D. | 0<f(3)-f(2)<f′(2)<f′(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x+2y+\sqrt{5}=0$或$x+2y-\sqrt{5}=0$ | B. | $x-2y+\sqrt{5}=0$或$x-2y-\sqrt{5}=0$ | ||
| C. | x+2y+5=0或x+2y-5=0 | D. | x-2y+5=0或x-2y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com