精英家教网 > 高中数学 > 题目详情
19.曲线y=2x-ex在x=0处的切线的倾斜角为(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

分析 求出y′=2-ex,从而y′|x=0=2-e0=1,由此利用导数的几何意义能求出曲线y=2x-ex在x=0处的切线的倾斜角.

解答 解:∵曲线y=2x-ex,∴y′=2-ex
∴y′|x=0=2-e0=1,
∴曲线y=2x-ex在x=0处的切线的倾斜角为$\frac{π}{4}$.
故选:B.

点评 本题考查切线的倾斜角的求法,涉及到导数、切线、导数的几何意义等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知P,A,B是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上不同的三点,且A,B关于原点对称,若直线PA,PB的斜率乘积${k_{PA}}•{k_{PB}}=\frac{3}{4}$,则该双曲线的离心率是(  )
A.2B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)={2^x}+xln\frac{1}{4}$在区间[-2,2]上的最大值为(  )
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下面四个命题:①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$;②$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$;③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;其中正确的个数为(  )
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(m,$\sqrt{3}$),且$\overrightarrow{a}$•$\overrightarrow{b}$=2,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,离心率$e=\frac{{\sqrt{3}}}{2}$,且短轴长为4.
(1)求椭圆的方程;
(2)过点P(2,1)作一弦,使弦被这点平分,求此弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设$\overrightarrow a=({3,4}),\overrightarrow b=({-1,7})$.
(1)求$\overrightarrow a•\overrightarrow b$;
(2)求$\overrightarrow a,\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,若$\frac{cosA}{cosC}$=$\frac{c}{a}$,则△ABC的形状是(  )
A.等腰直角三角形B.直角三角形
C.等腰或直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a=ln$\frac{1}{2}$,b=($\frac{1}{3}$)0.8,c=2${\;}^{\frac{1}{3}}$,则(  )
A.a<b<cB.a<c<bC.c<a<bD.b<a<c

查看答案和解析>>

同步练习册答案