精英家教网 > 高中数学 > 题目详情
8.在△ABC中,若$\frac{cosA}{cosC}$=$\frac{c}{a}$,则△ABC的形状是(  )
A.等腰直角三角形B.直角三角形
C.等腰或直角三角形D.等边三角形

分析 由已知利用余弦定理可得整理可得:b2(a2-c2)=(a2-c2)(a2+c2),从而可求a=c,或者b2=a2+c2,即可得解.

解答 解:∵$\frac{cosA}{cosC}$=$\frac{c}{a}$,可得acosA=ccosC,
∴a•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=c•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,整理可得:b2(a2-c2)=(a2-c2)(a2+c2),
∴a2-c2=0,即a=c,或者b2=a2+c2
∴△ABC的形状是等腰或直角三角形.
故选:C.

点评 本题主要考查了余弦定理在解三角形中的应用,考查了分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4cosωxsin(ωx-$\frac{π}{6}$)(ω>0)的最小正周期是π.
(1)求函数f(x)在区间x∈(0,π)的单调递增区间;
(2)求f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.曲线y=2x-ex在x=0处的切线的倾斜角为(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4内切,则m的值为-2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+bx在x=-1与x=2处都取得极值.
(Ⅰ)求a,b的值及函数f(x)的单调区间;
(Ⅱ)若x∈[-2,3]时,f(x)<m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果z 1、z 2∈C且z 1$\overline{{z}_{2}}$=$\overline{{z}_{1}}$z 2≠0,则 $\frac{{z}_{1}}{{z}_{2}}$是(  )
A.虚数B.纯虚数C.实数D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y∈R+且x+y=4,则使不等式$\frac{1}{x}+\frac{4}{y}$≥m恒成立的实数m的取值范围为(  )
A.(2,+∞)B.(-∞,$\frac{7}{4}$]C.(3,+∞)D.(-∞,$\frac{9}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知扇形的圆心角的弧度数为2,其弧长也是2,则该扇形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中错误的是(  )
A.两组对边分别相等的四边形是平行四边形
B.平行四边形的对边相等
C.对角线相等的四边形是矩形
D.矩形的对角线相等

查看答案和解析>>

同步练习册答案