精英家教网 > 高中数学 > 题目详情
17.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,-4≤x≤2}\\{2x,x>2}\end{array}\right.$,若f(x0)=6,则x0=-$\sqrt{10}$,或3.

分析 根据f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,-4≤x≤2}\\{2x,x>2}\end{array}\right.$,分类讨论满足f(x0)=6的x0值,可得答案.

解答 解:当-4≤x0≤2时,f(x0)=x02-4=6.
解得:x0=-$\sqrt{10}$,或x0=$\sqrt{10}$,
当x0>2时,f(x0)=2x0=6,
解得:x0=3,
综上所述:x0=-$\sqrt{10}$,或x0=3,
故答案为:-$\sqrt{10}$,或3.

点评 本题考查的知识点是分段函数的应用,分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知P(-2,1),Q(2,t).点M为直线y+1=0上的动点.若存在以PQ为直径的圆过点M,则实数t的取值范围为t≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}({sin^2}x-{cos^2}x)+2sinxcosx$.
(1)求f(x)最小正周期;
(2)设$x∈[-\frac{π}{3},\;\frac{π}{3}]$,求f(x)的值域和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于三次函数f(x)=ax3+bx2+cx+d,给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有对称中心,且“拐点”就是对称中心.若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,请你根据这一发现,则函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$的对称中心为(  )
A.$(\frac{1}{2},1)$B.$(-\frac{1}{2},1)$C.$(\frac{1}{2},-1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x+$\frac{1}{x}$-lnx.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程; 
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,0)且与直线x-2y-2=0垂直的直线方程是2x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设z为纯虚数,且|z-1|=|-1+i|,则z=±i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列关系式正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow a$•$\overrightarrow b$是一个向量C.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$D.0•$\overrightarrow{AB}$=$\overrightarrow 0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a-$\frac{3x}{500}}$)万元(a>0),剩下的员工平均每人每年创造的利润为原来(1+$\frac{x}{500}}$)倍.
(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多可以调整出多少名员工从事第三产业;
(Ⅱ)若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的最大取值是多少.

查看答案和解析>>

同步练习册答案