精英家教网 > 高中数学 > 题目详情

【题目】如图,D是直角△ABC斜边BC上一点,AC= DC.
(I)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=2 ,求DC的长.

【答案】解:(Ⅰ)在△ABC中,根据正弦定理,有

因为 ,所以

又∠ADC=∠B+∠BAD=∠B+60°>60°,

所以∠ADC=120°.

于是∠C=180°﹣120°﹣30°=30°,所以∠B=60°.

(Ⅱ)设DC=x,则BD=2x,BC=3x,

于是

在△ABD中,由余弦定理,得 AD2=AB2+BD2﹣2ABBDcosB,

,得x=2.

故DC=2.


【解析】(Ⅰ)由正弦定理有 ,又 ,可得 ,结合∠ADC=∠B+∠BAD=∠B+60°>60°,可求∠ADC,即可求B的值.(Ⅱ)设DC=x,则BD=2x,BC=3x, ,可求 ,由余弦定理即可计算得解DC的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln|x|,g(x)=﹣x2+3,则f(x)g(x)的图象为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2为双曲线 的左右焦点,过F1的直线l与圆x2+y2=b2相切于点M,且|MF2|=2|MF1|,则直线l的斜率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间 上单调递减,则m的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m是一个给定的正整数,m≥3,设数列{an}共有m项,记该数列前i项a1 , a2 , …,ai中的最大项为Ai , 该数列后m﹣i项ai+1 , ai+2 , …,am中的最小项为Bi , ri=Ai﹣Bi(i=1,2,3,…,m﹣1);
(1)若数列{an}的通项公式为 (n=1,2,…,m),求数列{ri}的通项公式;
(2)若数列{an}满足a1=1,r1=﹣2(i=1,2,…,m﹣1),求数列{an}的通项公式;
(3)试构造项数为m的数列{an},满足an=bn+cn , 其中{bn}是公差不为零的等差数列,{cn}是等比数列,使数列{ri}是单调递增的,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知圆C: (θ为参数),点P在直线l:x+y﹣4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
(I)求圆C和直线l的极坐标方程;
(II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR||OQ|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从A地到B地共有两条路径L1和L2 , 据统计,经过两条路径所用的时间互不影响,且经过L1与L2所用时间落在各时间段内的频率分布直方图分别如图(1)和图(2).
现甲、乙两人分别有40分钟和50分钟时间用于从A地到B地.
(1)为了尽最大可能在各自允许的时间内赶到B地,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到B地的人数,针对(1)的选择方案,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

同步练习册答案