精英家教网 > 高中数学 > 题目详情
已知直线tx+y-2=0与圆心为C的圆(x-1)2+(y-t)2=8相交于A,B两点,且△ABC为等边三角形,则实数t=
 
考点:直线与圆相交的性质
专题:直线与圆
分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.
解答: 解:圆心C(1,t),半径r=2
2

∵△ABC为等边三角形,
∴圆心C到直线AB:tx+y-2=0的距离d=
6

即d=
|t+t-2|
t2+1
=
6

平方得t2+4t+1=0,
解得t=-2±
3

故答案为:-2±
3
点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a+b+c=2,a2+2b2+3c2=4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈(b,a),且m≠0,
1
m
的取值范围是(
1
a
1
b
),则实数a,b满足
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c分别是△ABC中角A,B,C的对边,且(sinB+sinC+sinA)(sinB+sinC-sinA)=
18
5
sinBsinC,边b和c是关于x的方程x2-9x+25cosA=0的两根(b>c).
(1)求角A的正弦值;
(2)求边a,b,c的值;
(3)判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

调查表明,中年人的成就感与收入、学历、职业的满意度的指标有极强的相关性.现
将这三项的满意度指标分别记为x,y,z,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标w=x+y+z的值评定中年人的成就感等级:若w≥4,则成就感为一级;若2≤w≤3,则成就感为二级;若0≤w≤1,则成就感为三级.为了了解目前某群体中年人的成就感情况,研究人员随机采访了该群体的10名中年人,得到如下结果:
人员编号A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人员编号A6A7A8A9A10
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)在这10名被采访者中任取两人,求这两人的职业满意度指标相同的概率;
(Ⅱ)从成就感等级是一级的被采访者中任取一人,其综合指标为a,从成就感等级不是一级的被采访者中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+2y≥1
x-y≤1
y-1≤0
,若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)有两解,则实数k的取值范围是(  )
A、(-6,-2)
B、(-3,2)
C、(-
10
3
,-2)
D、(-
10
3
,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少中不同的选法?
(1)有2名女生入选;
(2)至少有1名女生入选;
(3)至多有2名女生入选;
(4)女生甲必须入选;
(5)男生A不能入选;
(6)女生甲、乙两人恰有1人入选.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为377,项数n为奇数,且前n项和中奇数项和与偶数项和之比为7:6,求中间项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1,x≤1
log2x,x>1
,则f(1)+f(2)=
 

查看答案和解析>>

同步练习册答案