【题目】设
为实数,已知
,![]()
(1)若函数
,求
的值;
(2)当
时,求证:函数
在
上是单调递增函数;
(3)若对于一切
,不等式
恒成立,求
的取值范围.
【答案】(1)
;(2)证明过程见解析;(3)
.
【解析】
(1)直接把
代入函数解析式,得到方程,求出
的值;
(2)求出函数
的解析式,用函数单调性的定义进行证明即可;
(3)分类讨论,把函数
的解析式,转化为二次函数解析式、分式类型函数解析式形式,利用它们的单调性求出
的取值范围.
(1)
;
(2)
,当
时,解析式可化简为:
,设
是
上任意两个不相等的实数,则有
,
,
因为
,
,所以
,因此有
,所以函数
是
上的递增函数;
(3)当
时,而
,所以
,因为
,所以有
在
恒成立,设
,对称轴为:
,故
在
上是增函数,要想(*)恒成立,只需
该不等式恒成立,故
;
当
时,
, 此时函数
是单调递增函数,要想
在
上恒成立,只需
这与
矛盾,故不成立;
当
时,![]()
,
当
时,函数
是单调递增函数,当
时,由(2)可知函数
是单调递增函数,所以函数
在
时,最小值为![]()
要想
在
上恒成立,只需
,而
,所以
,综上所述:
的取值范围为:
.
科目:高中数学 来源: 题型:
【题目】为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 | 1 | 2 | 6 |
市场价y元 | 5 | 2 | 10 |
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系
中,曲线
的参数方程为:
(
为参数,
),将曲线
经过伸缩变换:
得到曲线
.
(1)以原点为极点,
轴的正半轴为极轴建立坐标系,求
的极坐标方程;
(2)若直线
(
为参数)与
相交于
两点,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P(万元)和Q(万元),它们与投入资金x(万元)的关系有经验公式:P=
,Q=
.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
组别 |
|
|
|
|
|
|
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的
列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 |
|
|
现某市民要参加此次问卷调查,记
(单位:元)为该市民参加间卷调查获得的红包金额,求
的分布列及数学期望.
附表及公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合![]()
,如果对于
的每一个含有![]()
个元素的子集
,
中必有
个元素的和等于
,称正整数
为集合
的一个“相关数”
(1)当
时,判断
和
是否为集合
的“相关数”,说明理由;
(2)若
为集合
的“相关数”,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com