精英家教网 > 高中数学 > 题目详情
3.若tanα=2tan$\frac{π}{18}$,则$\frac{cos(α-\frac{4π}{9})}{sin(α-\frac{π}{18})}$的值为3.

分析 利用诱导公式、两角和与差的正、余弦公式以及同角三角函数对所求的代数式进行化简,然后代入求值即可.

解答 解:∵tanα=2tan$\frac{π}{18}$,
∴tan$\frac{π}{18}$=$\frac{1}{2}$tanα.
∴$\frac{cos(α-\frac{4π}{9})}{sin(α-\frac{π}{18})}$=$\frac{sin(α+\frac{π}{18})}{sin(α-\frac{π}{18})}$
=$\frac{sinαcos\frac{π}{18}+cosαsin\frac{π}{18}}{sinαcos\frac{π}{18}-cosαsin\frac{π}{18}}$
=$\frac{tanα+tan\frac{π}{18}}{tanα-tan\frac{π}{18}}$
=$\frac{tanα+\frac{1}{2}tanα}{tanα-\frac{1}{2}tanα}$
=3.
故答案是:3.

点评 本题主要考察了同角三角函数关系式、两角和与差的三角函数,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆E的顶点四边形的面积为4$\sqrt{3}$.
(1)求椭圆E的方程;
(2)过椭圆E内一点P(1,1)的直线l与椭圆交于M、N两点,若$\overrightarrow{MP}=\overrightarrow{PN}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上函数f(x)的导函数为f'(x),且$f(x)+f'(x)=\frac{2x-1}{e^x}$,若f(0)=0,则函数f(x)的单调减区间为(  )
A.$({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$B.$({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$
C.$({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$D.$({3-\sqrt{5},3+\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=\overrightarrow a•\overrightarrow b=2$,又$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,则$\overrightarrow c•\overrightarrow a$的最大值等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(Ⅰ)若函数y=f(x)与y=g(x)在x=1处有相同的切线,求m的值;
(Ⅱ)若函数y=f(x)-g(x)在定义域内不单调,求m-n的取值范围;
(Ⅲ)若?x>0,恒有|f(x)|≥|g(x)|成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,且a5+S7=74,a4是a1和a13的等比中项.
(1)求数列{an}的通项公式;
(2)设{$\frac{{b}_{n}}{{a}_{n}}$}是首项和公比均为3的等比数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式x2+2x+1-a2<0成立的充分条件为0<x<4,则实数a的取值范围为(  )
A.[5,+∞)B.[1,+∞)C.(-∞,3]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.奇函数f(x)在(0,+∞)内单调递增且f(2)=0,则不等式$\frac{f(x)}{x-1}>0$的解集为(  )
A.(-∞,-2)∪(0,1)∪(1,2)B.(-2,0)∪(1,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<2}\\{{x}^{2},x≥2}\end{array}\right.$,若f(a+1)≥f(2a-1),则实数a的取值范围是(-∞,2].

查看答案和解析>>

同步练习册答案