精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(Ⅰ)若函数y=f(x)与y=g(x)在x=1处有相同的切线,求m的值;
(Ⅱ)若函数y=f(x)-g(x)在定义域内不单调,求m-n的取值范围;
(Ⅲ)若?x>0,恒有|f(x)|≥|g(x)|成立,求实数m的最大值.

分析 (I)直接利用导数的几何意义即可求出m值;
(II)首先对y求导y'=f'(x)-g'(x)=$\frac{{x}^{2}+[2-m(1-n)]x+1}{x(x+1)^{2}}$,因为y=f(x)-g(x)在定义域内不单调,所以h(x)=x2+[2-m(1-n)]x+1 在(0,+∞)内有至少一个实根且曲线与x不相切.
(III)当x=1时,由|f(1)|≥|g(1)|得n=1,当x>1时,f(x)>0,g(x)>0;当0<x<1时,f(x)<0,g(x)<0;
令k(x)=f(x)-g(x),则问题转化为:当x>1时,k(x)≥0恒成立,当0<x<1时,k(x)≤0恒成立;

解答 解:(I)函数y=f(x)在x=1处的切线方程为y=x-1,
由g(1)=0得n=-1,由g'(1)=1得m=2;
(II)y'=f'(x)-g'(x)=$\frac{{x}^{2}+[2-m(1-n)]x+1}{x(x+1)^{2}}$,
因为y=f(x)-g(x)在定义域内不单调,所以
h(x)=x2+[2-m(1-n)]x+1 在(0,+∞)内有至少一个实根且曲线与x不相切.
因为h(0)=1>0,于是[2-m(1-n)]2-4>0;
∴m(1-n)>4或m(1-n)<0;
由m(1-n)>4知m+(1-n)≥2$\sqrt{m(1-n)}$>$2\sqrt{4}$,所以m-n>3;
(III)当x=1时,由|f(1)|≥|g(1)|得n=1,当x>1时,f(x)>0,g(x)>0;
当0<x<1时,f(x)<0,g(x)<0;
令k(x)=f(x)-g(x),则问题转化为:
当x>1时,k(x)≥0恒成立,当0<x<1时,k(x)≤0恒成立;
而k(x)=$\frac{x+2-2m+\frac{1}{x}}{(x+1)^{2}}$,当x≥1时,函数y=x+2-2m+$\frac{1}{x}$是单调函数,最小值为4-2m,
为使k(x)≥0恒成立,注意到k(1)=0,所以4-2m≥0,即m≤2;
同理,当0<x<1时,m≤2;
综上:m≤2.

点评 本题主要考查了导数几何意义,利用导数判断函数单调性以及转化思想应用,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.一个长方体的棱长分别为1、2、2,它的顶点都在同一个球面上,这个球的体积为(  )
A.$\frac{9}{4}π$B.$\frac{9}{2}π$C.18πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x||x-1|<2},B={x|x2-2mx+m2-1<0}.
(1)当m=3时,求A∩B;   
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知角α终边上一点P(m,5)(m≠0),且 $cosα=\frac{m}{13}$.求sinα+cosα+tanα的值;
(2)已知β∈(0,$\frac{π}{4}$)且$sinβcosβ=\frac{3}{10}$,求( I)tanβ的值;
(II)sin2α+2cos2α+4sinαcosαsin2β+2cos2β+4sinβcosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=2tan$\frac{π}{18}$,则$\frac{cos(α-\frac{4π}{9})}{sin(α-\frac{π}{18})}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间[0,4]上任取一个实数x,则x>1的概率是(  )
A.0.25B.0.5C.0.6D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=2px(p>0)上一点P(3,t)到焦点F距离为4.
(1)求抛物线方程;
(2)经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),若直线AM,BM的斜率分别为k1,k2,求k1•k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知M(x1,0),N(x2,$\frac{{\sqrt{2}}}{2}A}$)在函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象上,|x1-x2|的最小值$\frac{π}{3}$,则ω=(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.2D.1

查看答案和解析>>

同步练习册答案