分析 方法一:由${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=($\frac{1}{2}$x2+$\frac{1}{2}$sin2x)${丨}_{-\frac{π}{2}}^{\frac{π}{2}}$=sinπ=0;
方法二:${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$xdx+${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx,由y=x为奇函数,y=cos2x为偶函数,由定积分的性质,${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$xdx=0,${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx=2${∫}_{0}^{\frac{π}{2}}$cos2x=2sinπ=0.
解答 解:方法一:由${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=($\frac{1}{2}$x2+$\frac{1}{2}$sin2x)${丨}_{-\frac{π}{2}}^{\frac{π}{2}}$
=$\frac{1}{2}$($\frac{π}{2}$)2+$\frac{1}{2}$sin2($\frac{π}{2}$)-[$\frac{1}{2}$(-$\frac{π}{2}$)2+$\frac{1}{2}$sin2(-$\frac{π}{2}$)]=sinπ=0,
${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=0,
故答案为:0;
方法二:${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$xdx+${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx,
由y=x为奇函数,y=cos2x为偶函数,
∴由定积分的性质,${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$xdx=0,${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx=2${∫}_{0}^{\frac{π}{2}}$cos2x=2($\frac{1}{2}$sin2x)${丨}_{0}^{\frac{π}{2}}$=2sinπ=0,
∴${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$xdx+${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx=0,
点评 本题考查定积分的运算,考查定积分性质的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”. | |
| B. | “b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件. | |
| C. | 命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题. | |
| D. | 命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$ | B. | $({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$ | ||
| C. | $({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$ | D. | $({3-\sqrt{5},3+\sqrt{5}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [5,+∞) | B. | [1,+∞) | C. | (-∞,3] | D. | (-∞,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com