精英家教网 > 高中数学 > 题目详情
15.若不等式x2+2x+1-a2<0成立的充分条件为0<x<4,则实数a的取值范围为(  )
A.[5,+∞)B.[1,+∞)C.(-∞,3]D.(-∞,1]

分析 先解不等式x2+2x+1-a2<0得,-1-a<x<a-1,得到关于a的不等式组,这个不等式组的解便是a的取值范围.

解答 解:设A={x|x2+2x+1-a2<0}={x|-1-a<x<a-1},B={x|0<x<4}
依题意知B⊆A,因此$\left\{\begin{array}{l}{4≤a-1}\\{0≥-a-1}\end{array}\right.$,解得a≥5.
故选:A

点评 考查的知识点为充分条件的定义,子集的定义.要理解充分条件的定义,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x-y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,则4x•2y的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(x+cos2x)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若tanα=2tan$\frac{π}{18}$,则$\frac{cos(α-\frac{4π}{9})}{sin(α-\frac{π}{18})}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在区间[0,4]上任取一个实数x,则x>1的概率是(  )
A.0.25B.0.5C.0.6D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,内角A、b、c的对边长分别为a、b、c.已知a2-c2=2b,且sinB=4cosAsinC,则b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=2px(p>0)上一点P(3,t)到焦点F距离为4.
(1)求抛物线方程;
(2)经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),若直线AM,BM的斜率分别为k1,k2,求k1•k2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=log2x-x+3的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求证:函数f(x)是奇函数;
(Ⅱ)如果当x∈(-1,0]时,有f(x)<0,试判断f(x)在(-1,1)上的单调性,并用定义证明你的判断;
(Ⅲ)在(Ⅱ)的条件下,若a-8x+1>0对满足不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-2x)<0的任意x恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案