精英家教网 > 高中数学 > 题目详情
9.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x-y-2≤0\\ x≥0\\ y≥0\end{array}\right.$,则4x•2y的最大值为16.

分析 画出可行域,利用目标函数转化为2x+y的最大值,利用几何意义求解即可.

解答 解:作出可行域易知目标函数z=2x+y过两直线x-y+1=0,4x-y-2=0的交点A时取最大值,
由$\left\{\begin{array}{l}{x-y+1=0}\\{4x-y-2=0}\end{array}\right.$
可得A(1,2)则2x+y的最大值为4,4x•2y=22x+y的最大值为16.
故答案为:16.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“m$≤{∫}_{1}^{2}(4-3{x}^{2})dx$”是“函数f(x)=2${\;}^{x}+\frac{1}{{2}^{x+m}}$的值不小于4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论错误的是(  )
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
B.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件.
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题.
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆E的顶点四边形的面积为4$\sqrt{3}$.
(1)求椭圆E的方程;
(2)过椭圆E内一点P(1,1)的直线l与椭圆交于M、N两点,若$\overrightarrow{MP}=\overrightarrow{PN}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{ax}{{{x^2}+1}}(x∈R)$,如图是函数f(x)在[0,+∞)上的图象.
(1)求a的值,并判断函数的奇偶性补充作出函数f(x)在(-∞,0)上的图象,说明作图的理由;
(2)根据图象指出(不必证明)函数的单调区间与值域;

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}|{{{log}_{\frac{1}{2}}}x}|,0<x≤2\\-\frac{1}{2}x+2,x>2\end{array}$且f(a)=2,则f(a+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x3-$\frac{9}{2}$x2+5x-a.
(1)当a=$\frac{1}{2}$时,求函数f(x)在点(1,f(1))处的切线方程;
(2)对?x∈R,都有f′(x)≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上函数f(x)的导函数为f'(x),且$f(x)+f'(x)=\frac{2x-1}{e^x}$,若f(0)=0,则函数f(x)的单调减区间为(  )
A.$({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$B.$({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$
C.$({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$D.$({3-\sqrt{5},3+\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式x2+2x+1-a2<0成立的充分条件为0<x<4,则实数a的取值范围为(  )
A.[5,+∞)B.[1,+∞)C.(-∞,3]D.(-∞,1]

查看答案和解析>>

同步练习册答案