分析 (1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;
(2)?x∈R,f′(x)≥m恒成立?m≤[f′(x)]min,利用导数可得f′(x),再利用二次函数的单调性即可得出f′(x)的最小值;
解答 解:(1)a=$\frac{1}{2}$时,f(x)=x3-$\frac{9}{4}$x2+5x-$\frac{1}{2}$,
f′(x)=3x2-$\frac{9}{2}$x+5,f(1)=$\frac{13}{4}$,f′(1)=$\frac{7}{2}$,
故切线方程是:y-$\frac{13}{4}$=$\frac{7}{2}$(x-1),
即:14x-4y-1=0;
(2)函数f(x)=x3-$\frac{9}{2}$x2+5x-a.
f′(x)=3x2-9x+5=3(x-$\frac{3}{2}$)2-$\frac{7}{4}$,
∴[f′(x)]min=-$\frac{7}{4}$
?x∈R,f′(x)≥m恒成立?m≤[f′(x)]min,
∴m≤-$\frac{7}{4}$,
∴m的最大值为-$\frac{7}{4}$.
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{4}π$ | B. | $\frac{9}{2}π$ | C. | 18π | D. | 36π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{3},1})$ | B. | $({-∞,\frac{1}{3}})∪({1,+∞})$ | C. | $({-\frac{1}{3},\frac{1}{3}})$ | D. | $({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com