精英家教网 > 高中数学 > 题目详情
11.已知等差数列{a}的前n项和为Sn,公差为d,且a1=-20,则“3<d<5”是“Sn的最小值仅为S6”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用Sn的最小值仅为S6,可得a6<0,a7>0,求出$\frac{10}{3}$<d<4,根据集合的包含关系判断即可.

解答 解:∵Sn的最小值仅为S6
∴a6<0,a7>0,
∴$\left\{\begin{array}{l}{-20+5d<0}\\{-20+6d>0}\end{array}\right.$,
∴$\frac{10}{3}$<d<4,
3<d<5”是$\frac{10}{3}$<d<4的必要不充分条件,
故选:B.

点评 本题考查等差数列前n项和的最值,考查集合的包含关系考以及生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,则该四棱锥的外接球的半径为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}的前n项和为Sn,且3a3=a6+4若S5<10,则a2的取值范围是(  )
A.(-∞,2)B.(-∞,0)C.(1,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m$≤{∫}_{1}^{2}(4-3{x}^{2})dx$”是“函数f(x)=2${\;}^{x}+\frac{1}{{2}^{x+m}}$的值不小于4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知右焦点为F(c,0)的椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点$(1,\frac{3}{2})$,且椭圆M关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,a1=1,且3Sn=an+1-1.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}的前n项和为Tn,a2=b2,T4=1+S3,求$\frac{1}{{b}_{1}•{b}_{2}}+\frac{1}{{b}_{2}•{b}_{3}}+…+\frac{1}{{b}_{10}{b}_{11}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,a1+a4+a7=39,a2+a5+a8=33,则a4+a7+a10的值为(  )
A.30B.27C.24D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论错误的是(  )
A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
B.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件.
C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题.
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x3-$\frac{9}{2}$x2+5x-a.
(1)当a=$\frac{1}{2}$时,求函数f(x)在点(1,f(1))处的切线方程;
(2)对?x∈R,都有f′(x)≥m恒成立,求m的最大值.

查看答案和解析>>

同步练习册答案