精英家教网 > 高中数学 > 题目详情
3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,四个顶点所围成的菱形的面积为8$\sqrt{2}$.
(1)求椭圆的方程;
(2)已知直线y=kx+m与椭圆C交于两个不同的点A(x1,y1)和点B(x2,y2),O为坐标原点,且kOA•kOB=-$\frac{1}{2}$,求y1y2的取值范围.

分析 (1)利用菱形的面积和椭圆的性质即可得出;
(2)联立直线方程和椭圆方程,消去y,运用韦达定理和判别式大于0,以及直线的斜率公式,化简整理,即可得到y1y2的范围.

解答 解:(1)由已知可得e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{1}{2}$•2a•2b=8$\sqrt{2}$,
又a2=b2+c2
解得c=2,b=2,a2=8.
∴椭圆的方程为$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.
(2)直线L:y=kx+m与椭圆C交于两个不同点A(x1,x2)和B(x2,y2),
联立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=8}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,
△=16k2m2-4(1+2k2)(2m2-8)>0,化为8k2+4>m2,①
∴x1+x2=$\frac{-4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$.
∵满足kOA•kOB=-$\frac{1}{2}$,
∴$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$.
∴y1y2=-$\frac{1}{2}$x1x2=-$\frac{1}{2}$•$\frac{2{m}^{2}-8}{1+2{k}^{2}}$=-$\frac{{m}^{2}-4}{1+2{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2•$\frac{2{m}^{2}-8}{1+2{k}^{2}}$+km•$\frac{-4km}{1+2{k}^{2}}$+m2=$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$.
∴-$\frac{{m}^{2}-4}{1+2{k}^{2}}$=$\frac{{m}^{2}-8{k}^{2}}{1+2{k}^{2}}$.
∴4k2+2=m2
即有y1y2=-$\frac{{m}^{2}-4}{1+2{k}^{2}}$=-$\frac{2+4{k}^{2}-4}{1+2{k}^{2}}$=$\frac{4}{1+2{k}^{2}}$-2,
则y1y2∈(-2,2].

点评 本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、直线的斜率公式、菱形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求证:平面ABB1A1⊥BB1C1C;
(Ⅱ)若AB=2,求三棱柱ABC-A1B1C1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.比较tan$\frac{15π}{7}$与tan(-$\frac{17π}{9}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若在平面直角坐标系中,已知动点M和两个定点F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),且|MF1|+|MF2|=4
(1)求动点M轨迹C的方程;
(2)设O为坐标原点,若点E在轨迹C上,点F在直线y=-2上,且OE⊥OF,试判断直线EF与圆x2+y2=2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,直线l:y=-x+1与椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点.
(Ⅰ)若椭圆的焦距为2,离心率e=$\frac{\sqrt{3}}{3}$,求△OAB的面积;
(Ⅱ)若以A、B为直径的圆经过原点,且椭圆的长轴2a∈[$2\sqrt{2}$,$2\sqrt{3}$]时,求椭圆离心率取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,上顶点为A,过A于AF2垂直的直线交x轴于Q点,且$\overrightarrow{Q{F}_{2}}$=2$\overrightarrow{Q{F}_{1}}$.
(1)求椭圆C的离心率;
(2)若过A、Q,F1三点的圆恰好与直线x+$\sqrt{3}$y+10=0相切,求椭圆C的方程;
(3)过F1的直线l与(2)中椭圆交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设平面上一动点P到定点(1,0)的距离与到定直线x=4的距离之比为$\frac{1}{2}$.
(Ⅰ)求动点的p轨迹c的方程;
(Ⅱ)设定点a(-2,$\sqrt{3}$),曲线上C一点M(x0,y0),其中y0≥0.若曲线C上存在两点E,F,使$\overrightarrow{AE}$+$\overrightarrow{AF}$=$\overrightarrow{AM}$,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{xlnx}{x+1}$和g(x)=m(x-1)(m∈R).
(1)m=1时,求方程f(x)=g(x)的实根;
(2)若对于任意的x∈[1,+∞),f(x)≤g(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=10cosφ}\\{y=8sinφ}\end{array}\right.$,(其中φ为参数)在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{\begin{array}{l}{X=\frac{1}{5}x+3}\\{Y=\frac{1}{4}y}\end{array}\right.$得到曲线C1
(1)求曲线C1的普通方程;
(2)设点P是曲线C上的动点,过点P作直线与曲线C1切于点Q,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案