精英家教网 > 高中数学 > 题目详情

【题目】已知函数的两个零点为.

(1)求实数的取值范围;

(2)求证: .

【答案】(1);(2)见解析.

【解析】试题分析: (1)方法一的思路是:求出函数 的最大值,有两个零点,再最大值一定大于零,求出实数的范围.方法二是转化为两个函数的图象有两个交点; (2)采用综合法和分析法证明不等式.构造函数 ,利用单调性求出的范围,构造函数 ,证明 上为增函数, ,化简,得证.

试题解析:(1)方法一:

时, 上单调递增,不可能有两个零点.

时,由可解得,由可解得.

上单调递减,在上单调递增,于是.

要使得上有两个零点,则,解得,即的取值范围为.

方法二: ,可转化为函数与函数图象有两个交点.

,∴当时, 时, .即上单调递增,在上单调递减.

.

,即的取值范围为.

(2)令,则,由题意知方程有两个根,即方程有两个根,不妨设.

,则,由可得,由可得,∴时, 单调递增, 时, 单调递减.

根据已知有: ,要证,即证,即.

即证.令,下面证对任意的恒成立.

,∵,∴ .

.

,∴,∴.

是增函数,∴,∴.

点睛: 本题主要考查函数的导数的综合应用,函数的单调性与零点,构造法的应用,考查学生分析问题解决问题的能力,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 时,证明:

(2)当时,直线和曲线切于点,求实数的值;

(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={﹣2,3a﹣1,a2﹣3},B={a﹣2,a﹣1,a+1},若A∩B={﹣2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,下列四组函数中表示相等函数的是(
A.y=logax与y=(logxa)1
B.y=2x与y=logaa2x
C. 与y=x
D.y=logax2与y=2logax

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|,g(x)=x+1.

(1)若a=1,求不等式f(x)≤1的解集;

(2)对任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的钢板的边界是抛物线的一部分垂直于抛物线对称轴,现欲从钢板上截取一块以为下底边的等腰梯形钢板,其中均在抛物线弧上.设(米),且.

1)当时,求等腰梯形钢板的面积;

2)当为何值时,等腰梯形钢板的面积最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)意指,当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有( )个.
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取30件产品,测量这些产品的某项技术指标值,得到如下的频数分布表:

频数

2

6

18

4

(I)估计该技术指标值的平均数;(用各组区间中点值作代表)

(II) ,则该产品不合格,其余的是合格产品,试估计该条生产线生产的产品为合格品的概率;

(III)生产一件产品,若是合格品可盈利80元,不合格品则亏损10元,在(II)的前提下,从该生产线生产的产品中任取出两件,记为两件产品的总利润,求随机变量X的分布列和期望.

查看答案和解析>>

同步练习册答案