精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-
1
2
时,有g(x)≤0.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:(1)求导函数,利用导数大于0,求函数的单调增区间,导数小于0,求函数的单调减区间;
(2)对于任意实数x≥1,g(x)≤0恒成立,等价于xlnx+p(x2-1)≤0,设g(x)=xlnx+p(x2-1),由于g(1)=0,故只须g(x)=xlnx+p(x2-1)在x≥1时是减函数,再分离参数p,问题转化为求函数的最小值.
解答: 解:(1)当p=1时,f(x)=ln x-(x-1),f′(x)=
1
x
-1,
令f′(x)=0,∴x=1,∵x∈(0,+∞)
故函数f(x)的单调增区间为(0,1),单调减区间为(1,+∞);
(2)由题意函数g(x)=xf(x)+p(2x2-x-1)=xlnx+p(x2-1),
则xlnx+p(x2-1)≤0,
设g(x)=xlnx+p(x2-1),由于g(1)=0,
故只须g(x)=xlnx+p(x2-1)在x≥1时是减函数即可,
又因为g′(x)=lnx+2px+1,故lnx+2px+1≤0在x≥1时恒成立,
即p≤-
lnx+1
2x
在x≥1时恒成立,
(-
lnx+1
2x
)
=
lnx
2x
=0时,x=1.
∴x=1时,-
lnx+1
2x
能取到最小值-
1
2

∴当p≤-
1
2
时,有g(x)≤0.
点评:本题以函数为载体,考查导数的运用,考查利用导数求函数的单调区间,同时考查了函数最值的运用,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC是边长为4的等边三角形,点D、E分别满足
DC
=-
AC
BE
=
EC
,则
AB
DE
=(  )
A、8B、4C、-8D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x,
(1)求f(x)的单调区间;
(2)求f(x)在区间[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠B=45°,AC=
10
,cosC=
2
5
5

(1)求AB
(2)求sinA和BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司的仓库A存有货物12吨,仓库B存有货物8吨.现按7吨、8吨和5吨把货物分别调运给甲、乙、丙三个商店,从仓库A运货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元、从仓库B运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、5元.设仓库A运给甲、乙商店的货物分别为x吨,y吨,从两个仓库运货物到三个商店的总运费为z
(1)试用x与y来表示z.
(2)求从两个仓库运货物到三个商店的总运费z的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的表面积为am2,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos4x-2sinxcosx-sin4x
(1)化简 f(x)并求f(x)的振幅、相位、初相;
(2)当x∈[0,2π]时,求f(x)的最小值以及取得最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2 x2-3x,x∈R
(1)若f(x)≥
1
4
,求x的范围;
(2)求f(x)在x∈[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥矩形ABCD所在的平面,M、N分别为AB、PC的中点,∠PDA=45°,AB=2,AD=1
(1)求证:MN∥平面PAD; 
(2)求证:平面PMC⊥平面PCD;
(3)求MN与BC所成角的大小?

查看答案和解析>>

同步练习册答案