精英家教网 > 高中数学 > 题目详情
已知f(x)=2 x2-3x,x∈R
(1)若f(x)≥
1
4
,求x的范围;
(2)求f(x)在x∈[-1,1]上的值域.
考点:指数函数综合题
专题:函数的性质及应用
分析:(1)直接根据指数函数的单调性进行求解;
(2)首先,根据二次函数的单调性,然后,借助于指数函数的单调性进行求解,从而确定其值域问题.
解答: 解:(1)∵f(x)=2 x2-3x
∴f(x)≥
1
4
=2-2
∴2 x2-3x≥2-2
∴x2-3x≥-2,
∴x2-3x+2≥0,
∴x≤1或x≥2,
∴x的范围(-∞,1]∪[2,+∞);
(2)∵f(x)=2 x2-3x
设t=x2-3x=(x-
3
2
)2-
9
4

∵x∈[-1,1],
∴t∈[-2,4],
∴y∈[
1
4
,16].
∴f(x)在x∈[-1,1]上的值域[
1
4
,16].
点评:本题重点考查了指数函数的单调性、二次函数的性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2-
1
x+1
-x(x>-1),若f(x)≤t2-2at+1大于所有的x∈(-1,+∞),a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-p(x-1),p∈R.
(1)当p=1时,求函数f(x)的单调区间;
(2)设函数g(x)=xf(x)+p(2x2-x-1)(x≥1),求证:当p≤-
1
2
时,有g(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知如图:第一小组的频数为5.
(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)估算学生这次跳绳次数的中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x2-3a2x-2a-25
(1)若函数f(x)在(-1,1)上单调递减,求实数a的取值范围;
(2)若a>0,当0≤x≤3时f(x)≤x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ           …①
sin(α-β)=sinαcosβ-cosαsinβ          …②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  …③
令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述结论,试求sin15°+sin75°的值.
(2)类比上述推证方法,根据两角和与差的余弦公式,证明:cosA+cosB=2cos
A+B
2
•cos
A-B
2

(3)求函数y=cos2x•cos(2x+
π
6
)x∈[0,
π
4
]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子里装有6张卡片,其中有红色卡片4张,编号分别为1,2,3,4; 白色卡片2张,编号分别为1,2.
(1)从盒子中随机抽取2张卡片,求两张都是红色的概率;
(2)从盒子中有放回的逐次抽取2张卡片,求两张卡片的编号都为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥A-BCD中,E、F分别是棱AB、BC的中点,H、G分别是棱AD、CD上的点,且EH∩FG=K.求证:
(1)EH,BD,FG三条直线相交于同一点K;
(2)EF∥HG.

查看答案和解析>>

科目:高中数学 来源: 题型:

用导数的定义求:
(1)y=
2
x2
在x=1处的导数;
(2)y=x2+ax+b(a,b为常数)在x=-1处的导数.

查看答案和解析>>

同步练习册答案