ÔĶÁÏÂÃæ²ÄÁÏ£º¸ù¾ÝÁ½½ÇºÍÓë²îµÄÕýÏÒ¹«Ê½£¬ÓÐ
sin£¨¦Á+¦Â£©=sin¦Ácos¦Â+cos¦Ásin¦Â           ¡­¢Ù
sin£¨¦Á-¦Â£©=sin¦Ácos¦Â-cos¦Ásin¦Â          ¡­¢Ú
ÓÉ¢Ù+¢ÚµÃsin£¨¦Á+¦Â£©+sin£¨¦Á-¦Â£©=2sin¦Ácos¦Â  ¡­¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
A+B
2
£¬¦Â=
A-B
2

´úÈë¢ÛµÃsinA+sinB=2sin
A+B
2
cos
A-B
2
£®
£¨1£©ÀûÓÃÉÏÊö½áÂÛ£¬ÊÔÇósin15¡ã+sin75¡ãµÄÖµ£®
£¨2£©Àà±ÈÉÏÊöÍÆÖ¤·½·¨£¬¸ù¾ÝÁ½½ÇºÍÓë²îµÄÓàÏÒ¹«Ê½£¬Ö¤Ã÷£ºcosA+cosB=2cos
A+B
2
•cos
A-B
2
£®
£¨3£©Çóº¯Êýy=cos2x•cos£¨2x+
¦Ð
6
£©x¡Ê[0£¬
¦Ð
4
]µÄ×î´óÖµ£®
¿¼µã£ºÀà±ÈÍÆÀí,Á½½ÇºÍÓë²îµÄÕýÏÒº¯Êý
רÌ⣺¹æÂÉÐÍ,Èý½Çº¯ÊýµÄÇóÖµ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©ÓÉsinA+sinB=2sin
A+B
2
cos
A-B
2
£¬ÁîA=15¡ã£¬B=75¡ã£¬´úºÍ¿ÉµÃsin15¡ã+sin75¡ãµÄÖµ£®
£¨2£©ÓÉcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦ÂÁ½Ê½Ïà¼ÓµÃ£ºcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
A+B
2
£¬¦Â=
A-B
2
£¬¿ÉµÃ½áÂÛ£»
£¨3£©½áºÏ£¨2£©µÄ½áÂÛ£¬½«A=2x£¬B=2x+
¦Ð
6
£¬´úÈ뻯¼òº¯ÊýµÄ½âÎöʽ£¬½ø¶ø¸ù¾Ýx¡Ê[0£¬
¦Ð
4
]£¬Çó³öÏàλ½Ç4x+
¦Ð
6
¡Ê[
¦Ð
6
£¬
7¦Ð
6
]
£¬½ø¶ø¸ù¾ÝÓàÏÒº¯ÊýµÄͼÏóºÍÐÔÖʵõ½º¯Êýy=cos2x•cos£¨2x+
¦Ð
6
£©x¡Ê[0£¬
¦Ð
4
]µÄ×î´óÖµ£®
½â´ð£º ½â£º£¨1£©¡ßsinA+sinB=2sin
A+B
2
cos
A-B
2

¡àsin15¡ã+cos75¡ã=2sin
15¡ã+75¡ã 
2
•cos
15¡ã-75¡ã
2
=2sin45¡ã•cos£¨-30¡ã£©=
6
2
¡­3
£¨2£©ÒòΪcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬------¢Ù
cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â------¢Ú¡­5
¢Ù+¢ÚµÃcos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©=2cos¦Ácos¦Â£¬¢Û
Áî¦Á+¦Â=A£¬¦Á-¦Â=B ÓЦÁ=
A+B
2
£¬¦Â=
A-B
2
£¬¡­6
´úÈë¢ÛµÃ£ºcosA+cosB=2cos
A+B
2
•cos
A-B
2
£®¡­7
£¨3£©ÓÉ£¨2£©Öª£¬y=cos2xcos(2x+
¦Ð
6
)=
1
2
[cos(4x+
¦Ð
6
)+cos
¦Ð
6
]=
1
2
cos(4x+
¦Ð
6
)+
3
4
¡­8
¡ßx¡Ê[0£¬
¦Ð
4
]
£¬
¡à4x+
¦Ð
6
¡Ê[
¦Ð
6
£¬
7¦Ð
6
]
£¬¡­..9
¹Êº¯ÊýµÄ×î´óֵΪf(0)=
3
2
£®¡­10
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÁ½½ÇºÍÓë²îÈý½Çº¯Êý¹«Ê½¡¢¶þ±¶½Ç¹«Ê½¡¢Èý½Çº¯ÊýµÄºãµÈ±ä»»µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼ÏëµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA+B=
5
4
¦Ð£¬ÇÒA£¬B¡Ùk¦Ð+
¦Ð
2
£¨k¡ÊZ£©£¬ÇóÖ¤£º£¨1+tanA£©£¨1+tanB£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²×¶µÄ±íÃæ»ýΪam2£¬ÇÒËüµÄ²àÃæÕ¹¿ªÍ¼ÊÇÒ»¸ö°ëÔ²£¬ÇóÕâ¸öÔ²×¶µÄµ×ÃæÖ±¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾Ý¡¶Ñï×ÓÍí±¨¡·±¨µÀ£¬2013Äê8ÔÂ1ÈÕÖÁ8ÔÂ28ÈÕ£¬Ä³Êн»¹Ü²¿Ãʲ³é²éÁË1000Á¾³µ£¬²é³ö¾Æºó¼Ý³µºÍ×í¾Æ¼Ý³µµÄ¼ÝʻԱ80ÈË£¬Í¼Ê¾ÊǶÔÕâ80ÈËѪҺÖоƾ«º¬Á¿½øÐмì²éËùµÃ½á¹ûµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼Íê³ÉÏÂ±í£º
¾Æ¾«º¬Á¿£¨µ¥Î»£ºmg/100ml£© [20£¬30£© [30£¬40£© [40£¬50£© [50£¬60£©
ÈËÊý
¾Æ¾«º¬Á¿£¨µ¥Î»£ºmg/100ml£© [60£¬70£© [70£¬80£© [80£¬90£© [90£¬100]
ÈËÊý
£¨2£©¸ù¾ÝÉÏÊöÊý¾Ý£¬Çó´Ë´Î³é²éµÄ1000ÈËÖÐÊôÓÚ×í¾Æ¼Ý³µµÄ¸ÅÂÊ£»
£¨3£©ÈôÓ÷ֲã³éÑùµÄ·½·¨´ÓѪҺ¾Æ¾«Å¨¶ÈÔÚ[70£¬90£©·¶Î§ÄڵļÝʻԱÖгéȡһ¸öÈÝÁ¿Îª5µÄÑù±¾£¬²¢½«¸ÃÑù±¾¿´³ÉÒ»¸ö×ÜÌ壬´ÓÖÐÈÎÈ¡2ÈË£¬ÇóÇ¡ÓÐ1ÈËÊôÓÚ×í¾Æ¼Ý³µµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=2 x2-3x£¬x¡ÊR
£¨1£©Èôf£¨x£©¡Ý
1
4
£¬ÇóxµÄ·¶Î§£»
£¨2£©Çóf£¨x£©ÔÚx¡Ê[-1£¬1]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
a
=£¨4£¬3£©£¬
b
=£¨-1£¬2£©
£¨1£©Çó 
a
Óë
b
µÄ½ÇµÄÓàÏÒ£»
£¨2£©Èô£¨
a
-¦Ë
b
£©¡Í£¨2
a
+
b
£©£¬Çó¦Ë£»
£¨3£©Èô£¨
a
-¦Ë
b
£©¡Î£¨2
a
+
b
£©£¬Çó¦Ë£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É裨5x-
x
£©nµÄÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪM£¬¶þÏîʽϵÊýÖ®ºÍΪN£¬M-N=240£¬ÇóÕ¹¿ªÊ½ÖÐx3ÏîµÄϵÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ΪÁ˽âij°à¹Ø×¢NBA£¨ÃÀ¹úÖ°ÒµÀºÇò£©ÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ôij°à48È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÈçϵÄÁÐÁª±í£º
¹Ø×¢NBA ²»¹Ø×¢NBA ºÏ¼Æ
ÄÐÉú 6
Å®Éú 10
ºÏ¼Æ 48
ÒÑÖªÔÚÈ«°à48ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½¹Ø×¢NBAµÄѧÉúµÄ¸ÅÂÊΪ
2
3
£®
£¨1£©Ç뽫ÉÏÃæµÄ±í²¹³äÍêÕû£¨²»ÓÃд¼ÆËã¹ý³Ì£©£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ¹Ø×¢NBAÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£»
£¨2£©Éè¼×£¬ÒÒÊDz»¹Ø×¢NBAµÄ6ÃûÄÐÉúÖеÄÁ½ÈË£¬±û£¬¶¡£¬ÎìÊǹØ×¢NBAµÄ10ÃûÅ®ÉúÖеÄ3ÈË£¬´ÓÕâ5ÈËÖÐѡȡ2È˽øÐе÷²é£¬Ç󣺼ף¬ÒÒÖÁÉÙÓÐÒ»È˱»Ñ¡ÖеĸÅÂÊ£®
´ðÌâ²Î¿¼£º
P£¨K2¡Ýk£© 0.10 0.05 0.010 0.005
k0 2.706 3.841 6.635 7.879
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
£¬n=a+b+c+d£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎABCDΪÕý·½ÐΣ¬¡÷ABEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAE=90¡ã£¬ÇÒAD¡ÍAE£®
£¨¢ñ£©Ö¤Ã÷£ºÆ½ÃæAEC¡ÍÆ½ÃæBED£®
£¨¢ò£©ÇóÖ±ÏßECÓëÆ½ÃæBEDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸