精英家教网 > 高中数学 > 题目详情
用导数的定义求:
(1)y=
2
x2
在x=1处的导数;
(2)y=x2+ax+b(a,b为常数)在x=-1处的导数.
考点:导数的运算
专题:导数的概念及应用
分析:(1)根据题意进行分析,从1到1+△x时,曲线的增量为△y,则根据
lim
△x→0
△y
△x
的意义即可求得答案;
(2)根据题意进行分析,从-1到-1+△x时,曲线的增量为△y,则根据
lim
△x→0
△y
△x
的意义即可求得答案.
解答: 解:(1)由于
lim
△x→0
△y
△x

=
lim
△x→0
2
(1+△x)2
-
2
12
△x

=
lim
△x→0
2-2(1+△x)2
△x(1+△x)2

=
lim
△x→0
-4-2△x
(1+△x)2
=-4,
则y=
2
x2
在x=1处的导数为-4;
(2)由于
lim
△x→0
△y
△x

=
lim
△x→0
(-1+△x)2+a×(-1+△x)+b-((-1)2+a×(-1)+b)
△x

=
lim
△x→0
-2△x+(△x)2+a△x
△x

=
lim
△x→0
(a-2+△x)=a-2,
则y=x2+ax+b(a,b为常数)在x=-1处的导数为a-2.
点评:本题考查变化率与导数的基本意义,以及极限的运算,同时考查了运算能力,看清题中条件即可.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2 x2-3x,x∈R
(1)若f(x)≥
1
4
,求x的范围;
(2)求f(x)在x∈[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥矩形ABCD所在的平面,M、N分别为AB、PC的中点,∠PDA=45°,AB=2,AD=1
(1)求证:MN∥平面PAD; 
(2)求证:平面PMC⊥平面PCD;
(3)求MN与BC所成角的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,
(1)求证:MN∥平面PB1C.
(2)求证:D1B⊥平面PB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在锐角△ABC中,∠A=45°,a=2,c=
6
,求B和边b.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD为正方形,△ABE为等腰直角三角形,∠BAE=90°,且AD⊥AE.
(Ⅰ)证明:平面AEC⊥平面BED.
(Ⅱ)求直线EC与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:当x≥4时,
x
>lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且经过点M(2,1),直线y=
1
2
x-1与椭圆交于A,B两点.
(1)求椭圆方程;
(2)求线段AB中点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是
 

查看答案和解析>>

同步练习册答案