精英家教网 > 高中数学 > 题目详情
18.已知P是平行四边形ABCD所在平面外一点,E,F,G分别是PB,AB,BC中点,求证:平面PAC∥平面EFG.

分析 证明GE∥平面PAC,EF∥平面PAC,即可证明平面PAC∥平面EFG.

解答 证明:∵G为AB中点,E为BC的中点,
∴GE∥AC,
∵GE?平面PAC,AC?平面PAC,
∴GE∥平面PAC,
同理EF∥平面PAC,
∵GE∩EF=E,
∴平面PAC∥平面EFG,

点评 本题主要考查面面平行的判定定理的应用,线线平行、线面平行、面面平行的相互转化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若直线y=kx是曲线y=x3-x2+x的切线,则k的值为1或$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若一个底面是正三角形的三棱柱的主视图如图所示,则该三棱柱的体积为(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC所在平面α外一点P,点P在平面α上的射影为O,若PA=PB=PC,则点O是△ABC的(  )
A.外心B.内心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(x+b)+$\frac{ax}{x+1}$的图象在点(0,f(0))处的切线方程式3x-y=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(x+$\frac{1}{x}$-2)9,展开式x3的系数为18564.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xsinx+cosx(x>0).
(1)当x∈(0,2π)时,求f(x)的极值;
(2)记xi为f(x)的从小到大的第i(i∈N*)个极值点,证明:$\frac{1}{{{x}_{2}}^{2}}$+$\frac{1}{{{x}_{3}}^{2}}$+…+$\frac{1}{{{x}_{n}}^{2}}$<$\frac{2}{9}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等比数列{an}中an>0,且a5=2a4+3a3,则公比q=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=$\frac{1}{2}$AF,BC=$\sqrt{2}$AB,∠CBA=$\frac{π}{4}$,P为DF的中点.
(1)求证:PE∥平面ABCD;
(2)求平面DEF与平面ABCD所成角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案