精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的前n项和为Sn,若4Sn=(2n-1)an+1+1,且a1=1.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{a}_{n}({a}_{n}+2)}$,数列{cn}的前n项和为Tn
①求Tn
②对于任意的n∈N*及x∈R,不等式kx2-6kx+k+7+3Tn>0恒成立,求实数k的取值范围.

分析 (1)充分利用已知4Sn=(2n-1)an+1+1,将式子中n换成n-1,然后相减得到an与an+1的关系,利用累乘法得到数列的通项,
(2)①利用裂项求和,即可求出Tn
②根据函数的思想求出$\frac{n}{2n+1}$≥$\frac{1}{3}$,问题转化为kx2-6kx+k+8>0恒成立,分类讨论即可.

解答 解:(1)∵4Sn=(2n-1)an+1+1,
∴4Sn-1=(2n-3)an+1,n≥2
∴4an=(2n-1)an+1-(2n-3)an
整理得(2n+1)an=(2n-1)an+1
即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=3,$\frac{{a}_{3}}{{a}_{2}}$=$\frac{5}{3}$,…,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{2n-1}{2n-3}$
以上各式相乘得$\frac{{a}_{n}}{{a}_{1}}$=2n-1,又a1=1,
所以an=2n-1,
(2)①∵cn=$\frac{1}{{a}_{n}({a}_{n}+2)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
②由①可知Tn=$\frac{n}{2n+1}$,
∴$\frac{n}{2n+1}$≥$\frac{1}{3}$,
∵kx2-6kx+k+7+3Tn>0恒成立,
∴kx2-6kx+k+8>0恒成立,
当k=0时,8>0恒成立,
当k≠0时,则得$\left\{\begin{array}{l}{k>0}\\{△=36{k}^{2}-4k(k+8)<0}\end{array}\right.$,解得0<k<1,
综上所述实数k的取值范围为[0,1).

点评 本题考查了利用累乘法求数列的通项公式,裂项求和,数列的函数特征,以及不等式恒成立,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知tanα=2,则$\frac{1+2sinαcosα}{co{s}^{2}α-si{n}^{2}α}$的值等于(  )
A.$\frac{1}{3}$B.3C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期(  )
A.与b有关,且与c有关B.与b有关,但与c无关
C.与b无关,且与c无关D.与b无关,但与c有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A,B,C三点的坐标分别为A(2,0),B(0,2),C(cosα,sinα),其中α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若$|{\overrightarrow{AC}}|=|{\overrightarrow{BC}}|$,求角α的值;
(2)若$\overrightarrow{AC}\;•\;\overrightarrow{BC}=-1$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知0<α<$\frac{π}{2}$<β<π,sinα=$\frac{4}{5}$,cos(α-β)=$\frac{\sqrt{2}}{10}$,则β的值为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的函数f(x)满足(x+6)+f(x)=0,函数y=f(x-1)关于点(1,0)对称,则f(2016)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个函数中(1)f(x)=tan($\frac{x}{2}$-$\frac{π}{3}$);(2)f(x)=|sinx|;(3)f(x)=sinx•cosx;(4)f(x)=cosx+sinx最小正周期为π的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5min,生产一个骑兵需7min,生产一个伞兵需4min,已知总生产时间不超过10h,若生产一个卫兵可利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元,怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪[$\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

同步练习册答案